Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Biocomposites consisting of polylactic acid reinforced with 2 to 8 wt.% walnut shell and pine needle ash fillers were fabricated by the microwave heating technique. The mechanical properties such as tensile strength, flexural strength, impact strength, Vickers hardness, and sliding wear behavior of the produced biocomposites were examined. The tensile strength declined by 11.62% with a reinforcement of 8 wt.% pine needle ash (PNA) in the PLA matrix as compared to the neat PLA matrix. The flexural strength also dropped by 3.09% with the reinforcement of 8 wt.% PNA in the PLA matrix compared to the neat PLA. It was found that the impact energy was enhanced by 77.27 and 66.67% with the reinforcement of 8 wt.% PNA and WN fillers in the PLA matrix, respectively. The Vickers hardness also improved by 14.54 and 10.35% with the reinforcement of 8 wt.% PNA and WN fillers in the PLA matrix, respectively. In addition, the weight loss due to sliding wear was improved by 95.86 and 94.52% with the reinforcement of 8 wt.% WN and PNA fillers in the PLA matrix as compared to the neat PLA matrix, respectively. The drilling forces (thrust force and torque) were additionally recorded during the drilling process of the PNA and WN filled PLA based biocomposites.
Czasopismo
Rocznik
Tom
Strony
114--120
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- National Institute of Technology Uttarakhand, Mechanical Engineering Department, Srinagar – 246174, India
autor
- National Institute of Technology Uttarakhand, Mechanical Engineering Department, Srinagar – 246174, India
autor
- National Institute of Technology Uttarakhand, Mechanical Engineering Department, Srinagar – 246174, India
autor
- National Institute of Technology Uttarakhand, Mechanical Engineering Department, Srinagar – 246174, India
Bibliografia
- [1] Gandini A., Lacerda T.M., Carvalho A.J., Trovatti E., Progress of polymers from renewable resources: furans, vegetable oils, and polysaccharides, Chemical Reviews 2016, 116(3), 1637-1669.
- [2] Yu T., Ren J., Li S., Yuan H., Li Y., Effect of fiber surface-treatments on the properties of poly (lactic acid)/ramie composites, Composites Part A: Applied Science and Manufacturing 2010, 41(4), 499-505.
- [3] Koronis G., Silva A., Fontul M., Green composites: A review of adequate materials for automotive applications, Composites Part B: Engineering 2013, 44(1), 120-127.
- [4] Hitesh S., Ujendra K., Singh I., Misra J.P., Pawan R., Introduction to green composites, [In:] Processing of Green Composites, Springer, Singapore 2019, 1-13.
- [5] Finkenstadt V.L., Liu C.K., Evangelista R., Liu L., Cermak S.C., Hojilla-Evangelista M., Willett J.L., Poly (lactic acid) green composites using oilseed coproducts as fillers, Industrial Crops and Products 2007, 26(1), 36-43.
- [6] Ibrahim N.A., Yunus W.M.Z.W., Othman M., Abdan K., Hadithon K.A., Poly(lactic acid)(PLA)-reinforced kenaf bast fiber composites: the effect of triacetin, Journal of Reinforced Plastics and Composites 2010, 29(7), 1099-1111.
- [7] Ranakoti L., Gupta M., Rakesh P., Analysis of mechanical and tribological behavior of wood flour filled glass fiber reinforced epoxy composite, Materials Research Express 2019, 6(8), 085327.
- [8] Yussuf A.A., Massoumi I., Hassan A., Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: the influence of the natural fibers on the mechanical, ther mal and biodegradability properties, Journal of Polymers and the Environment 2010, 18(3), 422-429.
- [9] Sis A.L.M., Ibrahim N.A., Yunus W.M.Z.W., Effect of (3-aminopropyl) trimethoxysilane on mechanical properties of PLA/PBAT blend reinforced kenaf fiber, Iranian Polymer Journal 2013, 22(2), 101-108.
- [10] Juntuek P., Ruksakulpiwat C., Chumsamrong P., Ruksakulpiwat Y., Mechanical properties of polylactic acid and natural rubber blend using calcium carbonate and vetiver grass fiber as filler, Advanced Materials Research 2011, 410, 59-62.
- [11] Guna V., Ilangovan M., Ananthaprasad M.G., Reddy N., Hybrid biocomposites, Polymer Composites 2018, 39, E30-E54.
- [12] Fortunati E., Puglia D., Monti M., Santulli C., Maniruzzaman M., Foresti M.L., Kenny J.M., Okra (Abelmoschus esculentus) fibre-based PLA composites: mechanical behaviour and biodegradation, Journal of Polymers and the Environment 2013, 21(3), 726-737.
- [13] Way C., Wu D.Y., Cram D., Dean K., Palombo E., Processing stability and biodegradation of polylactic acid (PLA) composites reinforced with cotton linters or maple hardwood fibres, Journal of Polymers and the Environment 2013, 21(1), 54-70.
- [14] Song Y., Liu J., Chen S., Zheng Y., Ruan S., Bin Y., Mechanical properties of poly (lactic acid)/hemp fiber composites prepared with a novel method, Journal of Polymers and the Environment 2013, 21(4), 1117-1127.
- [15] Asaithambi B., Ganesan G., Kumar S.A., Bio-composites: Development and mechanical characterization of banana/sisal fibre reinforced polylactic acid (PLA) hybrid composites, Fibers and Polymers 2014, 15(4), 847-854.
- [16] Kuciel S., Mazur K., Hebda M., The influence of wood and basalt fibres on mechanical, thermal and hydrothermal properties of PLA composites, Journal of Polymers and the Environment 2020, 1-12.
- [17] Sosa E.D., Worthy E.S., Darlington T.K., Microwave-assisted manufacturing and repair of carbon-reinforced nanocomposites, Journal of Composites 2016, Article ID 7058649.
- [18] Bayart M., Gauvin F., Foruzanmehr M.R., Elkoun S., Robert M., Mechanical and moisture absorption characterization of PLA composites reinforced with nano-coated flax fibers, Fibers and Polymers 2017, 18(7), 1288-1295.
- [19] Bhattacharjee S., Bajwa D.S. Feasibility of reprocessing natural fiber filled poly(lactic acid) composites: an in-depth investigation, Advances in Materials Science and Engineering 2017, 1-10.
- [20] Zaaba N.F., Ismail H., A review on peanut shell powder reinforced polymer composites, Polymer-Plastics Technology and Materials 2019, 58(4), 349-365.
- [21] Awal A., Rana M., Sain M., Thermorheological and mechanical properties of cellulose reinforced PLA bio-composites, Mechanics of Materials 2015, 80, 87-95.
- [22] Battegazzore D., Alongi J., Frache A., Poly(lactic acid)-based composites containing natural fillers: thermal, mechanical and barrier properties, Journal of Polymers and the Environment 2014, 22(1), 88-98.
- [23] Gupta M.K., Rakesh P.K., Characterization of pine needle ash particulates reinforced surface composite fabricated by friction stir process, Mater. Res. Express 2019, 6(2019), 046539.
- [24] Gairola S., Gairola S., Sharma H., Rakesh P.K., Impact behavior of pine needle fiber/pistachio shell filler based epoxy composite, Journal of Physics: Conference Series 2019, 1240, 012096, 1-7.
- [25] Pokhriyal M., Prasad L., Rakesh P.K., Raturi H.P., Influence of fibre loading on physical and mechanical properties of Himalayan nettle fabric reinforced polyester composite, Materials Today: Proceedings 2018, 5(9), 16973-16982.
- [26] Ranakoti L., Rakesh P.K., Physio-mechanical characterization of tasar silk waste/jute fiber hybrid composite, Journal of Composites Communications 2020, DOI: 10.1016/j.coco.2020.100526.
- [27] Singh I., Bajpai P.K., Malik D., Sharma A.K., Kumar P., Feasibility study on microwave joining of green composites, Akademeia 2011, 1(1), ea0101.
- [28] Bajpai P.K., Singh I., Madaan J., Joining of natural fiber reinforced composites using microwave energy, experimental and finite element study, Materials and Design 2012, 35, 596-02.
- [29] Pantani R., Volpe V., Titomanlio G., Foam injection molding of poly (lactic acid) with environmentally friendly physical blowing agents, J. Mater. Process. Technol. 2014, 214(12), 3098-3107.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dee3c46e-4575-420d-9920-3200903551c7