PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of Long-Term Suspended Sediment Yield from a Small Agricultural Catchment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Predicting and estimating sediment yield from the catchment is crucial for the effective management of water resources and controlling soil erosion. Universal Soil Loss Equations (USLE) and their modifications have been appreciated and commonly applied among many methods. The idea of this work is to use the ESDAC database (a web platform hosting a series of pan-European and global datasets on soil erosion) to build the modified form of the USLE for the Zagożdzonka catchment, a small agricultural area located in central Poland. The calculated sediment yield is compared with the one determined based on the reservoir survey. The conducted analyses show that the average annual suspended sediment yield from the study catchment estimated using the MUSLE equation accounts for 201 Mg and is close to that determined based on the reservoir survey, i.e., 248 Mg. However, MUSLE, with the initially proposed parameters, will overpredict sediment transport at the study site. The ESDAC database may support local studies concerning soil erosion and sediment transport. The research is helpful for policymakers, planners, and engineers.
Rocznik
Strony
99--107
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Department of Water Engineering and Applied Geology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
  • Department of Water Engineering and Applied Geology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
  • Institute of Technology and Life Sciences – National Research Institute, Falenty, Poland
  • Department of Water Engineering and Applied Geology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
Bibliografia
  • 1. Banasik, K., Górski, D., Mitchell, J.K. 2001. Rainfall erosivity for East and Central Poland. International Symposium on Soil Erosion Research for the 21st Century, Proceedings, 279-282.
  • 2. Banasik, K., Hejduk, L., Krajewski, A., Wasilewicz, M. 2021. The intensity of siltation of a small reservoir in Poland and its relationship to environmental changes. CATENA, 204, 105436. https://doi.org/10.1016/j.catena.2021.105436
  • 3. Banasik, K., Hejduk, L., Woodward, D.E., Banasik, J. 2016. Flood Peak Discharge vs. Various CN and Rain Duration in a Small Catchment. Rocznik Ochrona Środowiska 18(1).
  • 4. Berteni, F., Dada, A., Grossi, G. 2021. Application of the MUSLE model and potential effects of climate change in a small Alpine catchment in Northern Italy. Water, 13, 2679. https://doi.org/10.3390/w13192679
  • 5. Borrelli, P., Alewell, C., Alvarez, P., Anache, J.A.A., Baartman, J., Ballabio, C., Bezak, N., et al. Soil erosion modelling: A global review and statistical analysis. Science of The Total Environment, 780, 146494. https://doi.org/10.1016/j.scitotenv.2021.146494
  • 6. Brański, J., Banasik, K. 1996. Sediment yields and denudation rates in Poland. Red Book Publ. IAHS, 133–138.
  • 7. Ciupa, T., Suligowski, R. 2022. The Relationship between Suspended Solid Loads and Dissolved Material during Floods of Various Origin in Catchments of Different Use. Water, 15, 90. https://doi.org/10.3390/w15010090
  • 8. de Vente, J., Poesen, J. 2005. Predicting soil erosion and sediment yield at the basin scale: Scale issues and semi-quantitative models. Earth-Science Reviews, 71, 95–125. https://doi.org/10.1016/j.earscirev.2005.02.002
  • 9. ESDAC, 2023. The European Soil Data Centre. Retrieved May 1, 2023, https://esdac.jrc.ec.europa.eu/
  • 10. Eyrolle, F., Lepage, H., Antonelli, C., Morereau, A., Cossonnet, C., Boyer, P., Gurriaran, R., 2020. Radionuclides in waters and suspended sediments in the Rhone River (France) - Current contents, anthropic pressures and trajectories. Science of The Total Environment, 723, 137873. https://doi.org/10.1016/j.scitotenv.2020.137873
  • 11. Gonzalez Rodriguez, L., McCallum, A., Kent, D., Rathnayaka, C., Fairweather, H. 2023. A review of sedimentation rates in freshwater reservoirs: recent changes and causative factors. Aquat Sci, 85, 60. https://doi.org/10.1007/s00027-023-00960-0
  • 12. Hejduk, A., Hejduk, L., Jóźwik, K. 2019. The relationship between air and soil temperature as a local indicator of climate change in small, agricultural catchment. Acta Scientiarum Polonorum. Formatio Circumiectus, 18(4), 161-175.
  • 13. IMGW (2022, May 25). Institute of Meteorology and Water Management, National Research Institute. Retrieved May 25, 2022, from https://www.imgw.pl/
  • 14. Krajewski, A., Hejduk, A., Hejduk, L. 2022. First evidence of microplastic presence in bed load sediments of a small urban stream in Warsaw. Sustainability, 14, 16017. https://doi.org/10.3390/su142316017
  • 15. Krajewski, A., Sikorska-Senoner, A.E., Hejduk, L., Banasik, K. 2021. An attempt to decompose the impact of land use and climate change on annual runoff in a small agricultural catchment. Water Resour Manage, 35, 881–896. https://doi.org/10.1007/s11269-020-02752-9
  • 16. Krajewski, A., Sikorska-Senoner, A.E., Ranzi, R., Banasik, K. 2019. Long-term changes of hydrological variables in a small lowland watershed in Central Poland. Water, 11, 564. https://doi.org/10.3390/w11030564
  • 17. Larson, W.E., Lindstrom, M.J., Schumacher, T.E. 1997. The role of severe storms in soil erosion: A problem needing consideration. Journal of Soil and Water Conservation, 52, 90–95.
  • 18. Liu, Q., Li, L., Andersen, L.V., Wu, M. 2023. Studying the abrasion damage of concrete for hydraulic structures under various flow conditions. Cement and Concrete Composites, 135, 104849. https://doi.org/10.1016/j.cemconcomp.2022.104849
  • 19. Madeyski, M., Banasik, K. 1989. Applicability of the modified universal soil loss equation in small Carpathian watersheds. Catena, 75–80.
  • 20. Mitchell, J.K., Banasik, K., Hirschi, M.C, Cooke, R.A.C., Kalita, P. 2001. There is not always surface runoff and sediment transport. International Symposium on Soil Erosion Research for the 21st Century, Proceedings, 575-578. https://orcid.org/0000-0002-7328-461X
  • 21. Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., Alewell, C., 2015a. The new assessment of soil loss by water erosion in Europe. Environmental Science & Policy 54, 438–447. https://doi.org/10.1016/j.envsci.2015.08.012
  • 22. Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., Alewell, C. 2015b. The new assessment of soil loss by water erosion in Europe. Environmental Science & Policy, 54, 438–447. https://doi.org/10.1016/j.envsci.2015.08.012
  • 23. Panagos, P., Van Liedekerke, M., Borrelli, P., Köninger, J., Ballabio, C., Orgiazzi, A., Lugato, E., Liakos, L., Hervas, J., Jones, A., Montanarella, L. 2022. European Soil Data Centre 2.0: Soil data and knowledge in support of the EU policies. European Journal of Soil Science, 73, e13315. https://doi.org/10.1111/ejss.13315
  • 24. Porto, P., Callegari, G. 2019. Initial results of sediment yield measurement interpretation using a regional approach: Southern Italy case study, in: Proceedings of the International Association of Hydrological Sciences. PIAHS, 381, 49–54. https://doi.org/10.5194/piahs-381-49-2019
  • 25. Shi, W., Chen, T., Yang, J., Lou, Q., Liu, M. 2022. An improved MUSLE model incorporating the estimated runoff and peak discharge predicted sediment yield at the watershed scale on the Chinese Loess Plateau. Journal of Hydrology, 614, 128598. https://doi.org/10.1016/j.jhydrol.2022.128598
  • 26. Tsige, M.G., Malcherek, A., Seleshi, Y. 2022. Improving the modified universal soil loss equation by physical interpretation of its factors. Water, 14, 1450. https://doi.org/10.3390/w14091450
  • 27. Walling, D., Webb, B. 1996. Erosion and Sediment Yield: A Global Overview, 236.
  • 28. Williams, J.R. 1975. Sediment-yield prediction with universal equation using runoff energy factor. Sediment-Yield Workshop, Present and Prospective Technology for Predict Sediment Yields and Sources, Proc, USDA Sediment Lab, 244–252.
  • 29. Wischmeier, W.H., Smith, D.D. 1978. Predicting rainfall erosion losses - a guide to conservation planning. Agricultural handbook 573, USDA-ARS.
  • 30. Zeng, J., Han, G., Yang, K. 2020. Assessment and sources of heavy metals in suspended particulate matter in a tropical catchment, northeast Thailand. Journal of Cleaner Production, 265, 121898. https://doi.org/10.1016/j.jclepro.2020.121898
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dedc2116-e6c4-447b-a7b4-432b88edf95a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.