PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of solution heat treatment on mechanical properties of Manaurite XM reformer tubes after long term service at elevated temperatures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of microstructure and mechanical properties changes of tubes made of Fe-Ni-Cr alloy G-X45NiCrNbTi35-25 after long term operation in methane reformer at elevated temperatures are presented. A method of tube regeneration by using solution heat treatment is proposed. Examinations included metallographic analysis with the use of light microscope (LM), scanning electron microscope (SEM), microanalysis of the chemical composition of precipitates (EDS) and static tensile tests. It was shown that solution heat treatment significantly affects the microstructure of the alloy, restoring the mechanical properties like tensile strength, yield strength and elongation of the tubes close to the values for the delivery condition, over 540 MPa, over 300 MPa and over 12%, respectively. The greatest improvement was observed in elongation, for samples after long-term operation at elevated temperature it was a minimum of 1.1% and after heat treatment 12.1% for the minimum requirement of 8% declared by producer (as cast).
Twórcy
  • Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Tenslab Sp. z o.o., ul. Śnieżna 5, Gdańsk, Poland
Bibliografia
  • 1. Facco, A., Couvrat, M., Magné, D., Roussel, M., Guillet, A., & Pareige, C. Microstructure influence on creep properties of heat-resistant austenitic alloys with high aluminum content. Materials Science and Engineering A (2020); 783: 139276. https://doi.org/10.1016/j.msea.2020.139276.
  • 2. Zečević, N., & Bolf, N. Integrated method of monitoring and optimization of steam methane reformer process. Processes (2020); 8(4): 408. https://doi.org/10.3390/pr8040408.
  • 3. Tse, M. C., Livera, E. R., & Christofidou, K. A. Metallurgical developments in steam-methane reformer tube alloys. Materials Science and Technology 2024; 02670836241262199. https://doi.org/10.1177/02670836241262199.
  • 4. Surkar, H. S., Kumar, A., Sirohi, S., Pandey, S. M., Świerczyńska, A., Fydrych, D., & Pandey, C. A dissimilar welded joint of grade 92 steel and AISI 304L steel obtained using IN82 buttering and IN617 filler: relationship of microstructure and mechanical properties. Archives of Civil and Mechanical Engineering 2024; 24(2): 109. doi: https://doi.org/10.1007/s43452-024-00920-x.
  • 5. Bastian, M., Sugiharto, E., & Ardy, H. The effect of service time on carbide volume fraction and hardness of catalyst tube materials. IOP Conference Series: Materials Science and Engineering 2019; 547(1): 012041. https://doi.org/10.1088/1757-899X/547/1/012041.
  • 6. Aditya, D. M., Ardy, H., Lantang, Y. S., Afrianti, Y. S., Ilmi, N. F., & Pasaribu, U. S. The study of sigma and carbide in cast austenitic stainless-steel grade HH after 24 years of high-temperature service. Heliyon 2023; 9(3). https://doi.org/10.1016/j.heliyon.2023.e14109.
  • 7. Huda, Z., Zaharinie, T., Aniszulaikha, I., & Almitani, K. Austenite-grain-growth kinetics and mechanism in type 347H alloy steel for boiler tubes. Advances in Materials Science 2023; 23(3): 79–97. https://doi.org/10.2478/adms-2023-0018.
  • 8. Sroka, M., Zieliński, A., Golański, G., Pawlyta, M., Purzyńska, H., & Novy, F. Evolution of the microstructure and mechanical properties of Sanicro 25 austenitic stainless steel after long-term ageing. Archives of Civil and Mechanical Engineering 2023; 23(3): 149. doi: https://doi.org/10.1007/s43452-023-00690-y.
  • 9. Varbai, B., Wéber, R., Farkas, B., Danyi, P., Krójer, A., Locskai, R., ... & Hős, C. Application of regression models on the prediction of corrosion degradation of a crude oil distillation unit. Advances in Materials Science 2024; 24(1): 72–85. https://doi.org/10.2478/adms-2024-0005.
  • 10. Łabanowski, J. Evaluation of catalytic tubes destruction processes in methane reformer operation. Gdańsk University of Technology, Gdańsk 2003.
  • 11. Guglielmino, E., Pino, R., Servetto, C., & Sili, A. Creep damage of high alloyed reformer tubes. In Handbook of materials failure analysis with case studies from the chemicals, concrete and power industries 2016, pp. 69–91. Butterworth-Heinemann. https://doi.org/10.1016/B978-0-08-100116-5.00004-1.
  • 12. Mikułowski, B., Zapała, R., Głownia, J., & Wilk, P. Structure and properties of the centrifugally cast high-alloyed (25Cr35NiNbTi) steel after long-time operation in steam reforming. Arch Metall Mater 2013; 58: 785–790. https://doi.org/10.2478/amm-2013-0072.
  • 13. Swaminathan, J., Prasad, P., Gunjan, M. K., Gugloth, K., Roy, P. K., Singh, R., & Ghosh, R. Mechanical strength and microstructural observations for remaining life assessment of service exposed 24Ni–24Cr–1.5 Nb cast austenitic steel reformer tubes. Engineering Failure Analysis 2008; 15(6): 723–735. https://doi.org/10.1016/j.engfailanal.2007.06.00.
  • 14. Lee, J. H., Yang, W. J., Yoo, W. D., & Cho, K. S. Microstructural and mechanical property changes in HK40 reformer tubes after long term use. Pap Present Third Int Conf Eng Fail Anal (Sitges, Spain, 13–16 July 2008) Part II 2009; 16: 1883–1888.
  • 15. Sun, W., Qin, X., Guo, J., Lou, L., & Zhou, L. Microstructure stability and mechanical properties of a new low cost hot-corrosion resistant Ni–Fe–Cr based superalloy during long-term thermal exposure. Materials & Design 2015; 69: 70–80. https://doi.org/10.1016/j.matdes.2014.12.030.
  • 16. Łabanowski, J., Jurkowski, M., & Landowski, M. Effect of long term service at elevated temperatures on mechanical properties of Manaurite XM reformer tubes. Adv Mater Sci 2016; 16. https://doi.org/10.1515/adms-2016-0021.
  • 17. Picasso, A. C., Lanz, C. A., Sosa Lissarrague, M., & Garofoli, A. D. Microstructure Evolution of a Nickel-Base Alloy Resistant to High Temperature during Aging. J Miner Mater Charact Eng 2016; 48–61. https://doi.org/10.4236/jmmce.2016.41006.
  • 18. Sustaita-Torres, I. A., Haro-Rodríguez, S., Guerrero-Mata, M. P., de la Garza, M., Valdés, E., Deschaux-Beaume, F., et al. Aging of a cast 35Cr–45Ni heat resistant alloy. Mater Chem Phys 2012; 133: 1018–1023. https://doi.org/10.1016/j.matchemphys.2012.02.010.
  • 19. Ray, A. K., Sinha, S. K., Tiwari, Y. N., Swaminathan, J., Das, G., Chaudhuri, S., & Singh, R. (2003). Analysis of failed reformer tubes. Engineering Failure Analysis, 10(3), 351–362. https://doi.org/10.1016/S1350-6307(02)00029-8.
  • 20. Kucia, K., Onderka, J., Wybraniec, M., Morawiec, H., Sojka, J., Smoleń, A., et al. PL165807. Method of regenerating catalytic tubes. 165807, 1995.
  • 21. Sojka, J., Mikułowski, B., Smoleń, A., Reszka, J., Sojka, J., Wybraniec, M., et al. PL175137 Method of restoring the functional properties of high-alloy cast steel tubes, 1998.
  • 22. Le May, I., da Silveira, T. L., & Vianna, C. H. Criteria for the evaluation of damage and remaining life in reformer furnace tubes. Int J Press Vessel Pip 1996; 66: 233–241. https://doi.org/10.1016/0308-0161(95)00098-4.
  • 23. Wang, W. Z., Xuan, F. Z., Wang, Z. D., Wang, B., & Liu, C. J. Effect of overheating temperature on the microstructure and creep behavior of HP40Nb alloy. Materials & Design 2011; 32(7): 4010–4016. https://doi.org/10.1016/j.matdes.2011.03.008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ded919c8-2b85-4bce-ba45-8252918cb0c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.