Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: Experimental investigations assessment and comparison of different classical models and machine learning models employed with Gaussian process regression (GPR) and artificial neural network (ANN) in the estimation of the depth of penetration (Hp) of plunging hollow jets. Design/methodology/approach: In this analysis, a set of data of 72 observations is derived from laboratory tests of plunging hollow jets which impinges into the water pool of tank. The jets parameters like jet length, discharge per unit water depth and volumetric oxygen transfer coefficient (Kla20) are varied corresponding to the depth of penetration (Hp) are estimated. The digital image processing techniques is used to estimate the depth of penetration. The Multiple nonlinear regression is used to establish an empirical relation representing the depth of penetration in terms of jet parameters of the plunging hollow jets which is further compared with the classical equations used in the previous research. The efficiency of MNLR and classical models is compared with the machine learning models (ANN and GPR). Models generated from the training data set (48 observations) are validated on the testing data set (24 observations) for the efficiency comparison. Sensitivity assessment is carried out to evaluate the impact of jet variables on the depth of penetration of the plunging hollow jet. Findings: The experimental performance of machine learning models is far better than classical models however, MNLR for predicting the depth of penetration of the hollow jets. Jet length is the most influential jet variable which affects the Hp. Research limitations/implications: The outcomes of the models efficiency are based on actual laboratory conditions and the evaluation capability of the regression models may vary beyond the availability of the existing data range. Practical implications: The depth of penetration of plunging hollow jets can be used in the industries as well as in environmental situations like pouring and filling containers with liquids (e.g. molten glass, molten plastics, molten metals, paints etc.), chemical and floatation process, wastewater treatment processes and gas absorption in gas liquid reactors. Originality/value: The comprehensive analyses of the depth of penetration through the plunging hollow jet using machine learning and classical models is carried out in this study. In past research, researchers were used the predictive modelling techniques to simulate the depth of penetration for the plunging solid jets only whereas this research simulate the depth of penetration for the plunging hollow jets with different jet variables.
Wydawca
Rocznik
Tom
Strony
49--61
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
- Department of Civil Engineering, National Institute of Technology Kurukshetra, India
autor
- Department of Civil Engineering, National Institute of Technology Kurukshetra, India
autor
- Department of Civil Engineering, National Institute of Technology Kurukshetra, India
autor
- Department of Electronics and Communication Engineering, National Institute of Technology Kurukshetra, India
Bibliografia
- [1] E. van de Sande, J.M. Smith, Mass transfer from plunging water jets, The Chemical Engineering Journal 10/3 (1975) 225-233.
- DOI: https://doi.org/10.1016/0300-9467(75)88040-3 [2] S. Deswal, Modeling oxygen-transfer by multiple plunging jets using support vector machines and Gaussian process regression techniques, International Journal of Civil and Environmental Engineering 5/1 (2011) 1-6.
- [3] X.L. Qu, L. Khezzar, D. Danciu, M. Labois, D. Lakehal, Characterization of plunging liquid jets: A combined experimental and numerical investigation, International Journal of Multiphase Flow 37/7 (2011) 722-731. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2011.02.006
- [4] K. Harby, S. Chiva, J.L. Munoz-Cobo, An experimental study on bubble entrainment and flow characteristics of vertical plunging water jets. Experimental Thermal and Fluid Science 57 (2014) 207-220. DOI: https://doi.org/10.1016/j.expthermflusci.2014.04.004
- [5] K. Tojo, K. Miyanami, Oxygen transfer in jet mixers, The Chemical Engineering Journal 24/1 (1982) 89-97. DOI: https://doi.org/10.1016/0300-9467(82)80054-3
- [6] T. Bagatur, A. Baylar, N. Sekerdag, The effect of nozzle type on air entrainment by plunging water jets, Water Quality Research Journal 37/3 (2002) 599-612. DOI: https://doi.org/10.2166/wqrj.2002.040
- [7] A. Ohkawa, D. Kusabiraki, Y. Shiokawa, N. Sakai, M. Fujii, Flow and oxygen transfer in a plunging water jet system using inclined short nozzles and performance characteristics of its system in aerobic treatment of wastewater, Biotechnology and Bioengineering 28/12 (1986) 1845-1856. DOI: https://doi.org/10.1002/bit.260281212
- [8] A. Baylar, M.E. Emiroglu, Air entrainment and oxygen transfer in a venturi, Proceedings of the Institution of Civil Engineers - Water and Maritime Engineering 156/3 (2003) 249-255. DOI: https://doi.org/10.1680/wame.2003.156.3.249
- [9] M.E. Emiroglu, A. Baylar, Role of nozzles with air holes in air entrainment by a water jet, Water Quality Research Journal 38/4 (2003) 785-95. DOI: https://doi.org/10.2166/wqrj.2003.049
- [10] S. Ranjan, Hydraulics of hollow jet aerators. Journal of Indian Water Resources Society 27/1-2 (2007) 27-31.
- [11] S. Ranjan, Hydraulics of jet aerators, Journal of the Institution of Engineers (India): Environmental Engineering Division 88 (2008) 29-32.
- [12] S. Deswal, D.V. Verma, Air-water oxygen transfer with multiple plunging jets, Water Quality Research Journal 42/4 (2007) 295-302. DOI: https://doi.org/10.2166/wqrj.2007.031
- [13] S. Deswal, D.V. Verma, Performance evaluation and modeling of a conical plunging jet aerator, International Journal of Mathematical, Physical and Engineering Sciences 2/1 (2008) 33-37.
- [14] M. Kumar, S. Ranjan, N.K. Tiwari, R. Gupta, Plunging hollow jet aerators-oxygen transfer and modelling, ISH Journal of Hydraulic Engineering 24/1 (2018) 61-67. DOI: https://doi.org/10.1080/09715010.2017.1348264
- [15] T. Bagatur, F. Onen, A predictive model on air entrain-ment by plunging water jets using GEP and ANN, KSCE Journal of Civil Engineering 18/1 (2014) 304-314. DOI: https://doi.org/10.1007/s12205-013-0210-7
- [16] F. Onen, Prediction of penetration depth in a plunging water jet using soft computing approaches, Neural Computing and Applications 25/1 (2014) 217-127. DOI: https://doi.org/10.1007/s00521-013-1475-y.
- [17] M.E. Jahromi, M. Khiadani, Experimental study on oxygen transfer capacity of water jets discharging into turbulent cross flow, Journal of Environmental Engineering 143/6 (2017) 04017007. DOI: https://doi.org/10.1061/(ASCE)EE.1943-7870.0001194
- [18] C. Clanet, J.C. Lasheras, Depth of penetration of bubbles entrained by a plunging water jet, Physics of Fluids 9/7 (1997) 1864-1866. DOI: https://doi.Org/1a1063/1.869336
- [19] E.J. McKeogh, D.A. Ervine, Air entrainment rate and diffusion pattern of plunging liquid jets, Chemical Engineering Science 36/7 (1981) 1161-1172. DOI: https://doi.org/10.1016/0009-2509(81)85064-6
- [20] T. Bagatur, Experimental analysis of flow characteristics from different circular nozzles at plunging water jets, Arabian Journal for Science and Engineering 39/4 (2014) 2707-2719. DOI: https://doi.org/10.1007/s13369-014-0967-0
- [21] M. Kramer, S. Wieprecht, K. Terheiden, Penetration depth of plunging liquid jets - A data driven modelling approach, Experimental Thermal and Fluid Science 76 (2016) 109-117. DOI: https://doi.org/10.1016/j.expthermflusci.2016.03.007
- [22] A.D. Eaton, L.S. Clesceri, M.A.H. Franson, E.W. Rice, A.E. Greenberg (eds.), Standard Methods for Examination of Water And Wastewater, 21th Edition, American Public Health Association, New York: 2005.
- [23] N.K. Tiwari, Evaluating hydraulic jump oxygen aeration by experimental observations and data driven techniques, ISH Journal of Hydraulic Engineering (2019) 1-5 (published online). DOI: https://doi.org/10.1080/09715010.2019.1658551
- [24] N.K. Tiwari, P. Sihag, Prediction of oxygen transfer at modified Parshall flumes using regression models, ISH Journal of Hydraulic Engineering 26/2 (2020) 209-220. DOI: https://doi.org/10.1080/09715010.2018.1473058
- [25] N.K. Tiwari, P. Sihag, D. Das, Performance evaluation of tunnel type sediment excluder efficiency by machine learning, ISH Journal of Hydraulic Engineering (2019) 1-3 (published online). DOI: https://doi.org/10.1080/09715010.2019.1667883
- [26] C.E. Rasmussen, Gaussian processes in machine learning, in: O. Bousquet, U. von Luxburg, G. Ratsch (eds.), Advanced Lectures on Machine Learning, ML 2003. Lecture Notes in Computer Science, vol. 3176, Springer, Berlin, Heidelberg, 2004, 63-71. DOI: https://doi.org/10.1007/978-3-540-28650-9 4
- [27] M. Kumar, N.K. Tiwari, S. Ranjan, Prediction of oxygen mass transfer of plunging hollow jets using regression models, ISH Journal of Hydraulic Engineering 26/1 (2020) 23-30. DOI: https://doi.org/10.1080/09715010.2018.1435311
- [28] M. Kumar, N.K. Tiwari, S. Ranjan, Kernel function based regression approaches for estimating the oxygen transfer performance of plunging hollow jet aerator, Journal of Achievements in Materials and Manufacturing Engineering 95/2 (2019) 74-84. DOI: http://doi.org/10.5604/01.3001.0013.7917
- [29] P. Sihag, B. Singh, A. Sepah Vand, V. Mehdipour, Modeling the infiltration process with soft computing techniques, ISH Journal of Hydraulic Engineering 26/2 (2020) 138-152. DOI: https://doi.org/10.1080/09715010.2018.1464408
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ded5258a-8958-4118-9a48-770743183a96