
Journal of Polish Safety and Reliability Association 

Summer Safety and Reliability Seminars, Volume 7, Number 1, 2016                     

 

 

 

193 

Sugier Jarosław 
University of Science and Technology, Wrocław, Poland 

 

 

 

Implementing SHA-3 candidate BLAKE algorithm in Field Program-

mable Gate Arrays 
 

 

 

 

 

Keywords 
 

BLAKE algorithm, FPGA, hash function, implementation efficiency, loop unrolling, pipelining. 
 

Abstract 
 

BLAKE is a cryptographic hash function proposed as a candidate in SHA-3 contest where he successfully 

qualified to the final round with other 4 candidates. Although it eventually lost to KECCAK it is still considered 

as a suitable solution with good cryptographic strength and great performance especially in software 

realizations. For these advantages BLAKE is commonly selected to be a hash function of choice in many 

contemporary IT systems in applications like digital signatures or message authentication. The purpose of this 

paper is to evaluate how the algorithm is suitable to be implemented in hardware using low-cost Field 

Programmable Gate Array (FPGA) devices, particularly to test how efficiently its complex internal 

transformations can be realized with FPGA resources when overall size of the implementation grows 

substantially with multiple rounds of the cipher running in parallel in hardware and capacity of the configurable 

array is used up to its limits. The study was made using the set of 7 different architectures with different loop 

unrolling factors and with optional application of pipelining, with each architecture being implemented in two 

popular families of FPGA devices from Xilinx. Investigation of the internal characteristic of the 

implementations generated by the tools helped in analysis how the fundamental mechanism of loop unrolling 

with or without pipelining works in case of this particular cipher. 

 

1. Introduction 
 

Contemporary Complex Information Systems (CIS) 

are involved and multifaceted amalgamates of 

technical, information, organization, software and 

human resources (users, administrators, technical 

support, etc.). Complexity and multiplicity of 

processes, their concurrency and their reliance on the 

in-system intelligence (human and artificial) 

significantly impedes construction of strict 

mathematical models and limits evaluation of 

adequate reliability measures. 

In such context, ensuring appropriate security and 

confidentiality of information processing (at data 

acquisition, transmission, storage and retrieval 

levels) constitute one of the main and one of the most 

important challenges in design, implementation, 

maintenance and management of a CIS system. 

Malfunctions caused by security violations are so 

common and usual in system operation that in 

modern dependability analysis they are treated in the 

same way as the traditional reliability theory 

considered “classic” failures. To meet the challenge 

of their eradication it is necessary to apply 

appropriate cryptographic methods. In this paper we 

consider one class of such methods which is based 

on so called hash functions. 

A hash function, formally, is a computationally 

efficient function which maps binary strings – called 

messages – of arbitrary length to binary strings of 

some fixed length, called hash-values or message 

digests. To be cryptographically efficient, a given 

hash function h should meet three essential 

conditions: a) it should be computationally infeasible 

to find two distinct inputs which evaluate to the same 

hash value, i.e. two colliding messages m1 and m2 

such that h(m1) = h(m1); b) it should be 

computationally infeasible to find a modification of 

some given message m which does not alters its 

digest h(m); c) having a specific hash-value H, it 

should be infeasible to find an input (pre-image) m 

such that h(m) = H. Cryptographic applications of 

hash functions include message authentication 

methods (computing and comparing h(m) with 

secured digest confirms that the message has not 

been modified), password protection (storing only 
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password digests instead of explicit passwords 

eliminates the risk of security breach if the storage is 

compromised, and is reliably sufficient to accept the 

password supplied by the user if its digest matches 

the stored one), or data identification (a relatively 

short digest can stand for a representation of a much 

larger data, enabling its faster identification). 

In the literature there are many proposals for efficient 

hardware implementations of the new generation of 

hash algorithms – including BLAKE and other SHA-

3 candidates [3]-[6], [9], [12] – and it was not the 

aim of this paper to supplement these kind of efforts. 

Instead, the goal of this work was to explore essential 

properties of BLAKE when it is implemented in an 

FPGA device in high-speed architectures. Starting 

with the basic iterative organization where one 

cipher round was realized in hardware and the data 

was repeatedly iterated through, other high-

throughput architectures were created with loop 

unrolling (multiple instances of rounds operated in a 

cascade which reduced number of iterations) and 

with pipelining of a partially unrolled loop 

(registering data at the boundaries of the instantiated 

rounds allowed for parallel processing of multiple 

data sets, thus massively increasing the throughput). 

Another dimension of the studies was introduced by 

testing two different devices as platforms for 

hardware implementation. All explored BLAKE 

architectures were implemented twice in chips from 

popular FPGA families manufactured by Xilinx, Inc.: 

the well-established Spartan-3 and the newer 

Spartan-6. This created a consistent base not only for 

evaluation of the concepts of different hardware 

organizations with various loop unrolling and 

pipelining mechanisms but also for comparison how 

the BLAKE’s specifics are handled by the 

implementation tools when the older (Spartan-3) 

versus the newer, more advanced (Spartan-6) FPGA 

arrays are used. 

Contents of the paper is organized as follows. In the 

next chapter we will introduce BLAKE hash function 

and briefly outline its background. Then, in chapter 

3, we will present loop unrolled and pipelined 

architectures of its implementation and discuss 

specific features of this particular algorithm in FPGA 

environment. Finally, in chapter 4 we will discuss the 

results obtained after implementation of the tested 

architectures in the two FPGA chips and evaluate 

specific problems which were observed. 

 

2. BLAKE hash algorithm 
 

2.1. Origin: the SHA-3 contest 
 

Hash functions applied in computer systems boast 

a long history of cryptographic development. The 

Message-Digest algorithms designed by Ronald 

Rivest from MIT in the years 1989-92 were the first 

widely recognized and standardized methods for 

improving security of data processing in computer 

networks.  Internet Society published them as official 

recommendations RFC 1319-21 (MD2, MD4 and 

MD5) and they soon  established a base of reference 

in further research. In particular, core ideas of MD4 

and MD5 methods were adopted in Secure Hash 

Algorithm (SHA-1) announced a U.S. Federal Infor-

mation Processing Standard PUB 180-1 in 1995. 

Constant increase in available computational power 

eventually made breaking the SHA-1 security more 

probable and in 2002 an amended PUB-2 standard 

was published. It introduced extended versions of the 

algorithm which became known under common 

name SHA-2. Still, foreseeing the need of an entirely 

new approach in hash design in order to compete 

with recent advances in cryptanalysis, in November 

2007 the U.S. National Institute of Standard and 

Technology announced an open competition for 

development of a novel SHA-3 standard. Like it was 

in case of establishing the AES specification, the 

intention was to find the best possible solution as 

a result of a free public debate. 14 of the proposed 

submissions passed the initial verification and in July 

2009 they were promoted to the second round where 

further detailed public examination proceeded. The 

best 5 algorithms – BLAKE, Grøstl, JH, KECCAK 

and Skein – were selected for the final round in 

December 2010 and from this group by decision of 

NIST KECCAK was selected as the winner. 

Although BLAKE eventually lost in the SHA-3 

contest the cipher was repeatedly acclaimed in all 

stages of competition for its good cryptographic 

strength and great performance especially in software 

realizations. For these advantages it is still often 

selected as a hash function of choice in many 

contemporary IT systems: for example, its variant 

was chosen as a checksum/validation method in 

recent extension to RAR file archive format, or it 

was applied in password-based key derivation 

function NeoScrypt which is intended to become an 

informational RFC recommendation. 

 

2.2. Specification of the cipher 
 

According to the official specification [1], 

construction of BLAKE was built on three well 

studied and widely accepted concepts: HAIFA round  

iteration scheme (an improved version of the 

standard Merkle-Damgård paradigm, providing 

resistance to long-message second preimage attacks), 

local wide-pipe internal organization (eliminating 

local collisions) and a compression function based on 

a modified Salsa20 stream cipher [2], [7], whose 

security has been intensively analyzed and proved to 
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be satisfactory despite relative simplicity of the 

processing. 

In this work we will analyze BLAKE-256 – the 

variant of the cipher in which size of the words is 

32b (leading to 512b state) and which produces 256b 

digest. To compute the hash, the message m of length 

l < 264 bits is first padded with bit string 

“10…01[l]64” so that its total bit length is a multiple 

of 512 (where []64 means 64-bit unsigned big-endian 

representation). Then the padded message is split 

into 512b blocks m0, …, mN-1 and the hash value h is 

computed iteratively in the following pseudo-code: 

 

   h0 = IV 

   for i = 0, …, N − 1 

      hi+1 = compress( hi, mi, s, li ) 

   return hN 

 

where: 

IV – initial value of the hash defined as a 256b 

constant identical to the one in the SHA-2 standard, 

s – so called salt, a unique 128b string 

parametrizing particular hash, supplied by the user, 

li  – number of message bits in mi, 

compress( h, m, s, t ) – a compression function which 

completely processes one block of data. 

 

2.3. BLAKE compression function 
 

As the pseudo-code in the preceding point shows, 

processing of each message block consists in 

application of the compression function and its 

implementation is the main subject of this paper. 

The function uses another 512b constant divided into 

16 words c0…c15, and 10 permutations 0…9 of the 

message words m0…m15 – both are statically defined 

in the specification1. The state is organized in a 4x4 

matrix of words v0 … v15 which is initially filled with 

input data, in part xor’ed with constants c0…c7: 
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1 To avoid ambiguity superscripts xi denote ordinal 

number of the 512b block of the message while subscripts 

xi are used to number 32b words within the compression 

function in the course of processing of some block mi. 

Then the state goes through nr = 14 rounds, with each 

round applying twice four Gi functions which modify 

all vi words: 

 

   G0(v0, v4, v8, v12);    G1(v1, v5, v9, v13); 

   G2(v2, v6, v10, v14);   G3(v3, v7, v11, v15); 
(2) 

 

and then 

 

   G4(v0, v5, v10, v15);   G5(v1, v6, v11, v12); 

   G6(v2, v7, v8, v13);    G7(v3, v4, v9, v14). 
(3) 

 

The first set of the Gi functions operates on words 

from each column of the matrix, while the second – 

on words taken from diagonals which corresponds to 

column and row rounds in Salsa20. 

Finally each function Gi(a, b, c, d) for a round 

number r = 0…13 is executed as a sequence of the 

following assignments: 

 

   a = a + b + ( mr' (2i)  c r' (2i + 1) ) 

   d = ( d  a ) >> 16 

   c = c + d 

   b = ( b  c ) >> 12 

   a = a + b + ( mr' (2i + 1)  cr' (2i) ) 

   d = ( d  a ) >> 8 

   c = c + d 

   b = ( b  c ) >> 7 

 

 

 

 

 

 

 

(4) 

 

where r' = r mod 10 and the operators denote the 

following transformations of the state words: 

 - bitwise xor of two bit vectors, 

+ - addition mod 232 of two vectors which are 

interpreted as positive numbers in natural binary 

code (i.e. regular 32b addition ignoring carry out), 

>> - right rotation of the word by a constant number 

of positions. 

After 14 iterations, the state produced by the last 

round is xor’ed with the input h and the salt s to give 

the return value of the compression h': 

 

   h'i  =  hi  si mod 4  vi  vi + 8,    i = 0 … 7. (5) 

 

3. Implementing BLAKE in hardware 
 

3.1. Organization of the processing 
 

Any round-based cipher – including BLAKE – can 

be efficiently implemented in a CPU-based digital 

system in software using an iterative scheme: 

operations of a single round are expressed in the 

code once and then applied to the state variables 

repeatedly in an iterative loop nr times. Parallel 

execution of multiple program threads which is 

viable in contemporary multi-core processors can be 

utilized to speed-up computation of one round 
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provided that its processing can be separated into 

multiple independent tasks. As it is shown in [3], 

BLAKE was the one of the 5 SHA-3 finalists which 

benefits to the greatest degree from this kind of 

processing, with four Gi functions inside the round 

naturally forming threads of parallel execution. 

When transferring the algorithm to hardware the 

designer is facing a larger diversity of feasible 

implementation options. In general, there are two 

opposite extreme approaches: the iterative loop of 

the cipher can be completely unrolled with all the 

rounds replicated in hardware as a cascade of nr 

modules (leading to a very large design), or the loop 

is not unrolled at all with just one round module 

implemented in hardware and its operation on state 

signals is repeated nr times, i.e. in nr clock cycles. 

Furthermore, as a mid-range solution the loop can be 

unrolled in part: one fourth, for example, of the 

rounds can be reproduced in hardware and the state 

signals are passed through four times. In this paper, 

after universal taxonomy proposed in [4], an 

architecture with k unrolled rounds will be denoted 

as xk while the basic iterative one – as x1. 

Moreover, in the case of purely iterative organization 

with the loop not unrolled processing of the single 

round can be further divided into multiple execution 

of a sub-module – again, in the case of BLAKE these 

would be the G functions – and thus computations of 

one round could be accomplished in four steps, i.e. in 

four clock cycles, but with only ¼ of the round 

implemented in silicon. Because the aim of this study 

was to evaluate high speed variants of cipher 

organization and to verify scalability of BLAKE with 

respect to the number of rounds implemented in 

hardware, such low speed and size limited 

organizations were not investigated. Instead, the 

following 7 organizations were selected for the test 

suite: 

x1 – the basic iterative architecture with one round 

implemented in hardware and the state being passed 

though it repeatedly in 14 clock cycles (i.e. each 

complete round is computed in one clock tick); 

x2 – modification of the above with a combinational 

cascade of two rounds implemented in hardware with 

total computation done in 7 clock cycles (in each 

clock tick the state is propagated through two 

rounds); 

x4 – the cascade is built from 4 rounds and 4 clock 

cycles are required for complete computation (the 

final result is taken from the second round in the 

cascade in order to get nr = 3 × 4 + 2); 

x5 – as the previous case but with 5 rounds in 

hardware and 3 clock cycles for complete 

computation (the final result is taken from the fourth 

round in the cascade and nr = 2 × 5 + 4); 

PPL2 – the modified x2 organization with pipeline 

registers added after each round: two chunks of data 

are processed in parallel (increasing the throughput 

twice) but the completion needs again 14 clock 

cycles since in one clock tick the state is transformed 

by one round; 

PPL4 – the pipelined x4 organization with 4 chunks 

of data processed in parallel and consequently higher 

throughput; 

PPL5 – the pipelined x5 architecture analogous to the 

previous cases. 

To implement in hardware one complete round of the 

compression function – which is the core of all 

7 tested architectures – one must first instantiate 

eight blocks of G functions, each with different 

permutations of the state words loaded to its inputs. 

Realization of this function was the central aspect of 

the whole design. 

 

3.2. Implementation of the G function 
 

As it was in case of the quarterround entity in the  

Salsa20 cipher (which is equivalent to the BLAKE’s 

G function), implementing the G function module 

followed closely equations (4). The design was 

specified by porting the equations to the VHDL 

language using strict RTL style: there were no 

instances of library elements, no sequential 

(procedural) descriptions were inserted and no 

explicit references to any specific hardware attributes 

were made so that the same code could be 

synthesized for entirely different device family, even 

from a different manufacturer. Because elementary 

operations of eq. (4) are some standard binary 

transformations, no sub-modules were required: both 

the XOR and the addition of the 32b vectors were 

done with the numeric_std operators whereas the 

rotations were described as a simple bit reordering in 

the signal vectors and expressed just as concurrent 

signal assignments that do not require any logic at all 

(in hardware implementations, as opposed to 

software realizations, rotations are done exclusively 

in routing and actually do not require any resources). 

As a result, the G function module was a plain 128b 

in / 128b out combinational circuit (although with 

quite involved internal structure at the bit level). The 

data paths of the 32b words which were produced by 

such approach are illustrated in Figure 1. 

 

3.3. Implementing the compression function: 

specifics of BLAKE data distribution 
 

Because BLAKE processing is very similar to that of 

Salsa20, implementation of the seven architectures 

(x1 … PPL5) was done in an analogous way as in 

[7]. Having constructed the round module with 

8 direct instances of the G function entities, the basic 
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x1 architecture was created by adding just 

rudimentary control and multiplexing logic, while in 

all other derived architectures multiple instances of 

the  round were simply instantiated repeatedly. 

 
 

a 

b 

c 

d 

mr'(2i) 

cr'(2i+1

) 

>>16 

>>12 

>>8 

>>7 

a' 

b' 

c' 

d' 

mr'(2i+1) 

cr'(2i) 

32b 

 
 

Figure 1. Data paths and elementary operations 

created by implementation of the G function 

 

Unlike Salsa20, though, BLAKE requires entirely 

different distribution of the message bits among the 

rounds. In Salsa20 and in majority of other hash 

functions (including SHA-3 winner KECCAK) the 

message bits are only loaded as an input to the first 

cipher round in parallel with other data like salt, 

counter or nonce. That is, the message bits enter only 

beginning of the round cascade and are not routed to 

each round separately. BLAKE, although its authors 

utilized Slasa20 core transformations, introduced one 

significant modification: instead of being loaded at 

the input of the round cascade, the message words 

are sent to the G functions (two words per each 

function) as the following two equations from the set 

(4) indicate: 

 

   a = a + b + ( mr' (2i)  c r' (2i + 1) ) 

   (…) 

   a = a + b + ( mr' (2i + 1)  cr' (2i) ) 

   (…) 

 

The authors introduced this new aspect as a relatively 

minor extension and indeed it may be so in software 

implementation: even if each G function operates in 

a separate thread of CPU execution, extra reads of 

RAM locations which store the message words did 

not alter the overall scheme of data handling and just 

added other operations to the sequence of already 

running ones. In hardware, though, this led to 

creation of a completely new, 512b wide data path 

which was not needed neither in Slasa20 nor in 

KECCAK organizations [7]-[8]. These paths are 

presented in Figure 2 for the case when two rounds 

of the iteration are unrolled (architectures x2 and 

PPL2). This effectively doubled the total width of the 

data path running along the round cascade from 512b 

(the state) to 1024b (the state plus the message bits). 

Distributing the message words was additionally 

complicated by permutations 0…9 used by the 

algorithm: in each round different permutation of mi 

is used so switching between them required 

supplementary multiplexers controlled by the round 

counter. For example, in the x1 architecture each 

G function module reads 10 different pairs of mi 

words thus in total 16 multiplexers 10:1 needed to be 

included, each switching 32b words. With loop 

unrolling the number of multiplexers is proportional 

the xk factor. 

In the pipelined organizations further problem arose: 

since the pipeline works with multiple sets of state 

data, an analogous pipeline for the message bits had 

to be created (the right part of Figure 2), again 

doubling the number of registers required for data 

storage. 

Because of involved multiplexing of the message 

words and their concurrent use it was not possible to 

use any sort of RAM resources which are available 

in the FPGA devices. Application of e.g. block RAM 

modules present in the Spartan families would 

greatly reduce register utilization but would be 

possible only in size-limited architectures, e.g. if 

each G function was computed sequentially in 

consecutive clock cycles (8 clock ticks per round 

computation) but this is not the direction tested in 

this work. As a result, all designs prepared in our test 

suite were fully autonomous, without any external 

memory requirements. 

 
 

Round 

Round 

 

h||s||t m 

512b 

      

 

Round 

Round 

m h||s||t 

 
 

Figure 2. BLAKE specifics: distribution of message 

bits in, e.g., x2 (left) and PPL2 (right) architectures 

 

4. Results 
 

All seven architectures: the basic iterative x1 plus 

3 unrolled ones and their pipelined variants were 

implemented and tested on two hardware platforms: 

Spartan-3 and Spartan-6 from Xilinx – the inventor 

of the FPGA devices and still their leading 

manufacturer. The source files describing the design 

were identical for both target platforms. In all cases 
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the hardware module  computing the complete 

compression function was equipped with basic input 

/ output registers providing means for sequential 

hashing of the message of arbitrary length in 512b 

chunks. 

The code was automatically synthesized and 

implemented by Xilinx ISE software with XST 

synthesis tool, and targeted for two devices – 

Spartan-3 XC3S5000-5 [10] and Spartan-6 

XC6SLX150-3 [11], both in FGG676 package. 

Devices XC3S5000 and XC6S150 were selected to 

be sufficiently large to accommodate the most sized 

x5 or PPL5 architectures. In terms of number of 

occupied slices (which are elementary configurable 

blocks in FPGA array, comprising a LUT function 

generator and a one-bit register) they took max. 70% 

of the resources in the Spartan-3 chip and max. 43% 

in the Spartan-6 device. The smallest x1 design, 

located on the other end of the spectrum, needed 

16% of Spartan-3 and 11% of Spartan-6 arrays. This 

shows that the size of FPGA devices did not limit the 

implementations and did not affect the results. 

 

4.1. Parameters of the implemented designs 
 

Table 1 presents basic size and performance 

characteristics of the 7 architectures obtained after 

their implementation. Speed aspect is represented by 

the value of the minimum clock period as it was 

estimated after static timing analysis of the final, 

fully routed design. From this parameter maximum 

theoretical throughput of the message stream was 

derived taking into account number of clock cycles 

needed to compute the hash and, in case of pipelined 

variants, number of data streams processed simulta-

neously in pipeline stages. 

Two middle columns provide parameters which 

illustrate effectiveness (or difficulties) of the 

implementation process, i.e. how the complex logical 

transformations of the algorithm were realized with 

programmable resources of the array: for the longest 

combinational path in the design the third column 

gives number of logic elements it contains (LUT 

generators) and the fourth – percentage of the 

propagation delay incurred by the routing resources 

(and not logic elements). Any significant rise in the 

latter parameter above 50-70% signifies problems 

with routing of propagation tracks between logic 

resources in the array: if the connections are too 

dense vs. distribution of logic elements, routing 

becomes congested and implementation in the FPGA 

array becomes problematic. 

Size characteristics for each design are reported in 

the last two columns of the table where total numbers 

of  utilized LUT generators and slices are given. 

 

Table 1. Size and speed of the implemented designs 
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x1 45.7 0.80 66 50.6 9155 5415 

x2 88.9 0.82 118 51.2 16928 10039 

x4 190 0.67 203 58.7 32933 19000 

x5 244 0.70 258 61.7 41923 23232 

PPL2 47.3 1.55 69 50.7 16817 10375 

PPL4 44.9 3.26 62 50.4 14591 9821 

PPL5 47.4 3.86 50 55.4 18066 11882 

S
p

ar
ta

n
-6

 

x1 28.7 1.28 35 64.3 5621 2460 

x2 67.7 1.08 70 72.3 10150 4409 

x4 108 1.18 150 65.6 18994 8396 

x5 185 0.92 131 78.1 24368 8833 

PPL2 30 2.40 38 65.6 10918 4144 

PPL4 33.7 4.33 35 69.0 20185 7246 

PPL5 35.1 5.21 44 68.9 24236 9816 

 

4.2. Performance evaluation 
 

The data from Table 1 allows to evaluate whether  

loop unrolling and pipelining have brought expected 

results in the derivative organizations with regard to 

their speed and size when the basic x1 design is used 

as a point of reference. The evaluation will be based 

on the following simple but rational  estimation. 

The minimum clock period – hence all performance 

parameters – in any unrolled or pipelined 

architecture should depend on the number of rounds 

the state must go through in one clock cycle. 

Assuming that in a perfectly regular implementation 

of xk or PPLk architecture propagation time through 

each instantiated round remains the same as in x1 

case, the expected values of Tclk should be: 

 

   Tclkxk  Tclkx1 · k 

   TclkPPLk  Tclkx1 
(6) 

 

The same relations should hold also for the number 

of logic levels included in the longest combinational 

path of the design. 

Using the estimations (6) one can compare them with 

actual parameters of x2 ÷ PPL5 designs and this is 

show in Figure 3: actual values of Tclk and number of 

logic levels in the longest path were divided by the 

estimations and the graph shows the quotient. 

In Spartan-3 we can recognize that the actual 

parameters behave in some predictable relation to the 

estimates. The clock period is very close to 

expectations: in the unrolled architectures there is 
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slight increase from 97% (x2) to 107% (x5), so 

effectiveness of the implementation somewhat 

decreases with the number of rounds, but still 

keeping 107% of the expected clock period in 

a design with so long combinational paths as in x5 is 

a very good result. Moreover, we can see that 

increasing the length of combinational paths gives 

more opportunity for optimization procedures which 

can pack more logic into LUTs so the number of  

levels of logic decreases; since this is accompanied 

with an increase of routing part in the total delay 

(Table 1) these two trends compensate each other. 

 

 

 
 

Figure 3. Actual vs. expected performance 

parameters of the derivative architectures 

 

In the pipelined architectures there is no increase in 

the longest path which in all cases spans just one 

round so there is no such evident trend (with the 

exception in levels of logic which again is better 

packed in LUTs in larger designs) but the final Tclk 

values remain very close to the estimations. 

The situation is not so clear and predictable when the 

same designs were implemented in the newer 

Spartan-6 device. The x4 design does not follow the 

overall trend and shows Tclk significantly shorter than 

expected (apparently this design fit particularly well 

structure of the array in the XC6SLX150 device) but 

all other designs reached clock period which are 

longer than expected, up to 129% in the x5 case. 

Also it is difficult to see any trend in the “Levels of 

logic” parameter. This could be related to the fact 

that routing was not so straightforward in this device: 

the routing part parameters in Table 1 approach 

hazardously high levels of 70% (and in the 

exceptionally good x4 implementation this value is 

noticeably better than in x2 and x5) so the 

implementation tools struggled to produce expected 

results. 

 

4.3. Size evaluation 
 

In a manner analogous to that from the previous 

point, one can estimate expected size parameters (i.e. 

the number of occupied LUTs or slices) of the 

derived architectures from the values of x1 case. In 

both expansion mechanisms – unrolling and 

pipelining – size of the whole design should increase 

proportionally to the number of rounds instantiated 

in hardware so: 

 

   Sizexk  Sizex1 · k 

   SizePPLk  Sizex1 · k 
(7) 

 

Additional registers which are added in the pipelined 

organizations usually do not introduce any extra 

burden in the FPGA arrays and therefore the above 

estimations are assumed identical for both xk and 

PPLk cases. Also the specific additional distribution 

of the message words to each round, as discussed in 

chapter 3.3, should scale according to these simple 

proportions. 

On the other hand, the x1 size includes some input / 

output logic (e.g. the input multiplexers shown in 

Figure 2) which is not replicated with the rounds so 

the values computed from (7) can be somewhat 

overestimated. 

 

 

 
 

Figure 4. Actual vs. expected size parameters of the 

derivative architectures 

 

This overestimation is truly confirmed by Figure 4 

where actual numbers of utilized LUTs and slices are 

compared against the estimates (7): almost all 

parameters at most oscillate close to 90% and, unlike 
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in Figure 3, none exceeds 97%. Again the graph for 

the older Spartan-3 family is more consistent: only 

two largest pipelined architectures were significantly 

optimized in size but all other ones use 906% of 

expected LUTs or slices. In Spartan-6, like it was 

already noted for Figure 3, routing close to 

congestion made implementation results less 

predictable but no bad cases were detected. On the 

contrary, unlike speed characteristics the size 

parameters at most are unexpectedly better than 

estimations with e.g. slice utilization in x5 and PPL4 

cases down to 72-74% of the estimates. 

 

5. Conclusions 
 

In this paper we have analyzed high-speed 

implementations of the BLAKE hash functions based 

on concepts of loop unrolling and pipelining. The 

investigated basic iterative architecture can reach 0.8 

(Spartan-3) or 1.3 (Spartan-6) Gbps throughput while 

the largest pipelined one – respectively, 3.9 and 5.2 

Gbps. This is on par with other known results, but 

the aim of this work was not in delivering “yet-

another-k%-better” solution. Instead, we have 

analyzed intrinsic internal characteristic of the 

implementations generated by the tools to identify 

how the fundamental mechanism of loop unrolling 

with or without pipelining works in case of this 

particular cipher. 

Although BLAKE is often considered to be at its 

core a modification of Slasa20 hash function the 

introduced extensions are substantially more  

significant for hardware implementations than for 

software ones. The additional data paths provided for 

distribution of message bits to every round instance, 

which are not seen in Salsa20 or Keccak hashes, 

made BLAKE implementations more difficult for the 

tools. 

Additionally, we have shown how the two FPGA 

platforms – Spartan-3 and Spartan-6 – are fit for 

implementation of this cipher. Although the newer 

and faster Spartan-6 devices do deliver more capable 

implementations in terms of raw throughput, routing 

problems that start to appear on this platform can 

make the results less predictable than they were in 

the older Spartn-3 arrays. 
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