
Journal of Polish Safety and Reliability Association

Summer Safety and Reliability Seminars, Volume 7, Number 1, 2016

193

Sugier Jarosław
University of Science and Technology, Wrocław, Poland

Implementing SHA-3 candidate BLAKE algorithm in Field Program-

mable Gate Arrays

Keywords

BLAKE algorithm, FPGA, hash function, implementation efficiency, loop unrolling, pipelining.

Abstract

BLAKE is a cryptographic hash function proposed as a candidate in SHA-3 contest where he successfully

qualified to the final round with other 4 candidates. Although it eventually lost to KECCAK it is still considered

as a suitable solution with good cryptographic strength and great performance especially in software

realizations. For these advantages BLAKE is commonly selected to be a hash function of choice in many

contemporary IT systems in applications like digital signatures or message authentication. The purpose of this

paper is to evaluate how the algorithm is suitable to be implemented in hardware using low-cost Field

Programmable Gate Array (FPGA) devices, particularly to test how efficiently its complex internal

transformations can be realized with FPGA resources when overall size of the implementation grows

substantially with multiple rounds of the cipher running in parallel in hardware and capacity of the configurable

array is used up to its limits. The study was made using the set of 7 different architectures with different loop

unrolling factors and with optional application of pipelining, with each architecture being implemented in two

popular families of FPGA devices from Xilinx. Investigation of the internal characteristic of the

implementations generated by the tools helped in analysis how the fundamental mechanism of loop unrolling

with or without pipelining works in case of this particular cipher.

1. Introduction

Contemporary Complex Information Systems (CIS)

are involved and multifaceted amalgamates of

technical, information, organization, software and

human resources (users, administrators, technical

support, etc.). Complexity and multiplicity of

processes, their concurrency and their reliance on the

in-system intelligence (human and artificial)

significantly impedes construction of strict

mathematical models and limits evaluation of

adequate reliability measures.

In such context, ensuring appropriate security and

confidentiality of information processing (at data

acquisition, transmission, storage and retrieval

levels) constitute one of the main and one of the most

important challenges in design, implementation,

maintenance and management of a CIS system.

Malfunctions caused by security violations are so

common and usual in system operation that in

modern dependability analysis they are treated in the

same way as the traditional reliability theory

considered “classic” failures. To meet the challenge

of their eradication it is necessary to apply

appropriate cryptographic methods. In this paper we

consider one class of such methods which is based

on so called hash functions.

A hash function, formally, is a computationally

efficient function which maps binary strings – called

messages – of arbitrary length to binary strings of

some fixed length, called hash-values or message

digests. To be cryptographically efficient, a given

hash function h should meet three essential

conditions: a) it should be computationally infeasible

to find two distinct inputs which evaluate to the same

hash value, i.e. two colliding messages m1 and m2

such that h(m1) = h(m1); b) it should be

computationally infeasible to find a modification of

some given message m which does not alters its

digest h(m); c) having a specific hash-value H, it

should be infeasible to find an input (pre-image) m

such that h(m) = H. Cryptographic applications of

hash functions include message authentication

methods (computing and comparing h(m) with

secured digest confirms that the message has not

been modified), password protection (storing only

Sugier Jarosław

Implementing SHA-3 candidate BLAKE algorithm in Field Programmable Gate Arrays

194

password digests instead of explicit passwords

eliminates the risk of security breach if the storage is

compromised, and is reliably sufficient to accept the

password supplied by the user if its digest matches

the stored one), or data identification (a relatively

short digest can stand for a representation of a much

larger data, enabling its faster identification).

In the literature there are many proposals for efficient

hardware implementations of the new generation of

hash algorithms – including BLAKE and other SHA-

3 candidates [3]-[6], [9], [12] – and it was not the

aim of this paper to supplement these kind of efforts.

Instead, the goal of this work was to explore essential

properties of BLAKE when it is implemented in an

FPGA device in high-speed architectures. Starting

with the basic iterative organization where one

cipher round was realized in hardware and the data

was repeatedly iterated through, other high-

throughput architectures were created with loop

unrolling (multiple instances of rounds operated in a

cascade which reduced number of iterations) and

with pipelining of a partially unrolled loop

(registering data at the boundaries of the instantiated

rounds allowed for parallel processing of multiple

data sets, thus massively increasing the throughput).

Another dimension of the studies was introduced by

testing two different devices as platforms for

hardware implementation. All explored BLAKE

architectures were implemented twice in chips from

popular FPGA families manufactured by Xilinx, Inc.:

the well-established Spartan-3 and the newer

Spartan-6. This created a consistent base not only for

evaluation of the concepts of different hardware

organizations with various loop unrolling and

pipelining mechanisms but also for comparison how

the BLAKE’s specifics are handled by the

implementation tools when the older (Spartan-3)

versus the newer, more advanced (Spartan-6) FPGA

arrays are used.

Contents of the paper is organized as follows. In the

next chapter we will introduce BLAKE hash function

and briefly outline its background. Then, in chapter

3, we will present loop unrolled and pipelined

architectures of its implementation and discuss

specific features of this particular algorithm in FPGA

environment. Finally, in chapter 4 we will discuss the

results obtained after implementation of the tested

architectures in the two FPGA chips and evaluate

specific problems which were observed.

2. BLAKE hash algorithm

2.1. Origin: the SHA-3 contest

Hash functions applied in computer systems boast

a long history of cryptographic development. The

Message-Digest algorithms designed by Ronald

Rivest from MIT in the years 1989-92 were the first

widely recognized and standardized methods for

improving security of data processing in computer

networks. Internet Society published them as official

recommendations RFC 1319-21 (MD2, MD4 and

MD5) and they soon established a base of reference

in further research. In particular, core ideas of MD4

and MD5 methods were adopted in Secure Hash

Algorithm (SHA-1) announced a U.S. Federal Infor-

mation Processing Standard PUB 180-1 in 1995.

Constant increase in available computational power

eventually made breaking the SHA-1 security more

probable and in 2002 an amended PUB-2 standard

was published. It introduced extended versions of the

algorithm which became known under common

name SHA-2. Still, foreseeing the need of an entirely

new approach in hash design in order to compete

with recent advances in cryptanalysis, in November

2007 the U.S. National Institute of Standard and

Technology announced an open competition for

development of a novel SHA-3 standard. Like it was

in case of establishing the AES specification, the

intention was to find the best possible solution as

a result of a free public debate. 14 of the proposed

submissions passed the initial verification and in July

2009 they were promoted to the second round where

further detailed public examination proceeded. The

best 5 algorithms – BLAKE, Grøstl, JH, KECCAK

and Skein – were selected for the final round in

December 2010 and from this group by decision of

NIST KECCAK was selected as the winner.

Although BLAKE eventually lost in the SHA-3

contest the cipher was repeatedly acclaimed in all

stages of competition for its good cryptographic

strength and great performance especially in software

realizations. For these advantages it is still often

selected as a hash function of choice in many

contemporary IT systems: for example, its variant

was chosen as a checksum/validation method in

recent extension to RAR file archive format, or it

was applied in password-based key derivation

function NeoScrypt which is intended to become an

informational RFC recommendation.

2.2. Specification of the cipher

According to the official specification [1],

construction of BLAKE was built on three well

studied and widely accepted concepts: HAIFA round

iteration scheme (an improved version of the

standard Merkle-Damgård paradigm, providing

resistance to long-message second preimage attacks),

local wide-pipe internal organization (eliminating

local collisions) and a compression function based on

a modified Salsa20 stream cipher [2], [7], whose

security has been intensively analyzed and proved to

Journal of Polish Safety and Reliability Association

Summer Safety and Reliability Seminars, Volume 7, Number 1, 2016

195

be satisfactory despite relative simplicity of the

processing.

In this work we will analyze BLAKE-256 – the

variant of the cipher in which size of the words is

32b (leading to 512b state) and which produces 256b

digest. To compute the hash, the message m of length

l < 264 bits is first padded with bit string

“10…01[l]64” so that its total bit length is a multiple

of 512 (where []64 means 64-bit unsigned big-endian

representation). Then the padded message is split

into 512b blocks m0, …, mN-1 and the hash value h is

computed iteratively in the following pseudo-code:

 h0 = IV

 for i = 0, …, N − 1

 hi+1 = compress(hi, mi, s, li)

 return hN

where:

IV – initial value of the hash defined as a 256b

constant identical to the one in the SHA-2 standard,

s – so called salt, a unique 128b string

parametrizing particular hash, supplied by the user,

li – number of message bits in mi,

compress(h, m, s, t) – a compression function which

completely processes one block of data.

2.3. BLAKE compression function

As the pseudo-code in the preceding point shows,

processing of each message block consists in

application of the compression function and its

implementation is the main subject of this paper.

The function uses another 512b constant divided into

16 words c0…c15, and 10 permutations 0…9 of the

message words m0…m15 – both are statically defined

in the specification1. The state is organized in a 4x4

matrix of words v0 … v15 which is initially filled with

input data, in part xor’ed with constants c0…c7:










































71615040

33221100

7654

3210

15141312

111098

7654

3210

ctctctct

cscscscs

hhhh

hhhh

vvvv

vvvv

vvvv

vvvv

 (1)

1 To avoid ambiguity superscripts xi denote ordinal

number of the 512b block of the message while subscripts

xi are used to number 32b words within the compression

function in the course of processing of some block mi.

Then the state goes through nr = 14 rounds, with each

round applying twice four Gi functions which modify

all vi words:

 G0(v0, v4, v8, v12); G1(v1, v5, v9, v13);

 G2(v2, v6, v10, v14); G3(v3, v7, v11, v15);
(2)

and then

 G4(v0, v5, v10, v15); G5(v1, v6, v11, v12);

 G6(v2, v7, v8, v13); G7(v3, v4, v9, v14).
(3)

The first set of the Gi functions operates on words

from each column of the matrix, while the second –

on words taken from diagonals which corresponds to

column and row rounds in Salsa20.

Finally each function Gi(a, b, c, d) for a round

number r = 0…13 is executed as a sequence of the

following assignments:

 a = a + b + (mr' (2i)  c r' (2i + 1))

 d = (d  a) >> 16

 c = c + d

 b = (b  c) >> 12

 a = a + b + (mr' (2i + 1)  cr' (2i))

 d = (d  a) >> 8

 c = c + d

 b = (b  c) >> 7

(4)

where r' = r mod 10 and the operators denote the

following transformations of the state words:

 - bitwise xor of two bit vectors,

+ - addition mod 232 of two vectors which are

interpreted as positive numbers in natural binary

code (i.e. regular 32b addition ignoring carry out),

>> - right rotation of the word by a constant number

of positions.

After 14 iterations, the state produced by the last

round is xor’ed with the input h and the salt s to give

the return value of the compression h':

 h'i = hi  si mod 4  vi  vi + 8, i = 0 … 7. (5)

3. Implementing BLAKE in hardware

3.1. Organization of the processing

Any round-based cipher – including BLAKE – can

be efficiently implemented in a CPU-based digital

system in software using an iterative scheme:

operations of a single round are expressed in the

code once and then applied to the state variables

repeatedly in an iterative loop nr times. Parallel

execution of multiple program threads which is

viable in contemporary multi-core processors can be

utilized to speed-up computation of one round

Sugier Jarosław

Implementing SHA-3 candidate BLAKE algorithm in Field Programmable Gate Arrays

196

provided that its processing can be separated into

multiple independent tasks. As it is shown in [3],

BLAKE was the one of the 5 SHA-3 finalists which

benefits to the greatest degree from this kind of

processing, with four Gi functions inside the round

naturally forming threads of parallel execution.

When transferring the algorithm to hardware the

designer is facing a larger diversity of feasible

implementation options. In general, there are two

opposite extreme approaches: the iterative loop of

the cipher can be completely unrolled with all the

rounds replicated in hardware as a cascade of nr

modules (leading to a very large design), or the loop

is not unrolled at all with just one round module

implemented in hardware and its operation on state

signals is repeated nr times, i.e. in nr clock cycles.

Furthermore, as a mid-range solution the loop can be

unrolled in part: one fourth, for example, of the

rounds can be reproduced in hardware and the state

signals are passed through four times. In this paper,

after universal taxonomy proposed in [4], an

architecture with k unrolled rounds will be denoted

as xk while the basic iterative one – as x1.

Moreover, in the case of purely iterative organization

with the loop not unrolled processing of the single

round can be further divided into multiple execution

of a sub-module – again, in the case of BLAKE these

would be the G functions – and thus computations of

one round could be accomplished in four steps, i.e. in

four clock cycles, but with only ¼ of the round

implemented in silicon. Because the aim of this study

was to evaluate high speed variants of cipher

organization and to verify scalability of BLAKE with

respect to the number of rounds implemented in

hardware, such low speed and size limited

organizations were not investigated. Instead, the

following 7 organizations were selected for the test

suite:

x1 – the basic iterative architecture with one round

implemented in hardware and the state being passed

though it repeatedly in 14 clock cycles (i.e. each

complete round is computed in one clock tick);

x2 – modification of the above with a combinational

cascade of two rounds implemented in hardware with

total computation done in 7 clock cycles (in each

clock tick the state is propagated through two

rounds);

x4 – the cascade is built from 4 rounds and 4 clock

cycles are required for complete computation (the

final result is taken from the second round in the

cascade in order to get nr = 3 × 4 + 2);

x5 – as the previous case but with 5 rounds in

hardware and 3 clock cycles for complete

computation (the final result is taken from the fourth

round in the cascade and nr = 2 × 5 + 4);

PPL2 – the modified x2 organization with pipeline

registers added after each round: two chunks of data

are processed in parallel (increasing the throughput

twice) but the completion needs again 14 clock

cycles since in one clock tick the state is transformed

by one round;

PPL4 – the pipelined x4 organization with 4 chunks

of data processed in parallel and consequently higher

throughput;

PPL5 – the pipelined x5 architecture analogous to the

previous cases.

To implement in hardware one complete round of the

compression function – which is the core of all

7 tested architectures – one must first instantiate

eight blocks of G functions, each with different

permutations of the state words loaded to its inputs.

Realization of this function was the central aspect of

the whole design.

3.2. Implementation of the G function

As it was in case of the quarterround entity in the

Salsa20 cipher (which is equivalent to the BLAKE’s

G function), implementing the G function module

followed closely equations (4). The design was

specified by porting the equations to the VHDL

language using strict RTL style: there were no

instances of library elements, no sequential

(procedural) descriptions were inserted and no

explicit references to any specific hardware attributes

were made so that the same code could be

synthesized for entirely different device family, even

from a different manufacturer. Because elementary

operations of eq. (4) are some standard binary

transformations, no sub-modules were required: both

the XOR and the addition of the 32b vectors were

done with the numeric_std operators whereas the

rotations were described as a simple bit reordering in

the signal vectors and expressed just as concurrent

signal assignments that do not require any logic at all

(in hardware implementations, as opposed to

software realizations, rotations are done exclusively

in routing and actually do not require any resources).

As a result, the G function module was a plain 128b

in / 128b out combinational circuit (although with

quite involved internal structure at the bit level). The

data paths of the 32b words which were produced by

such approach are illustrated in Figure 1.

3.3. Implementing the compression function:

specifics of BLAKE data distribution

Because BLAKE processing is very similar to that of

Salsa20, implementation of the seven architectures

(x1 … PPL5) was done in an analogous way as in

[7]. Having constructed the round module with

8 direct instances of the G function entities, the basic

Journal of Polish Safety and Reliability Association

Summer Safety and Reliability Seminars, Volume 7, Number 1, 2016

197

x1 architecture was created by adding just

rudimentary control and multiplexing logic, while in

all other derived architectures multiple instances of

the round were simply instantiated repeatedly.

a

b

c

d

mr'(2i)

cr'(2i+1

)

>>16

>>12

>>8

>>7

a'

b'

c'

d'

mr'(2i+1)

cr'(2i)

32b

Figure 1. Data paths and elementary operations

created by implementation of the G function

Unlike Salsa20, though, BLAKE requires entirely

different distribution of the message bits among the

rounds. In Salsa20 and in majority of other hash

functions (including SHA-3 winner KECCAK) the

message bits are only loaded as an input to the first

cipher round in parallel with other data like salt,

counter or nonce. That is, the message bits enter only

beginning of the round cascade and are not routed to

each round separately. BLAKE, although its authors

utilized Slasa20 core transformations, introduced one

significant modification: instead of being loaded at

the input of the round cascade, the message words

are sent to the G functions (two words per each

function) as the following two equations from the set

(4) indicate:

 a = a + b + (mr' (2i)  c r' (2i + 1))

 (…)

 a = a + b + (mr' (2i + 1)  cr' (2i))

 (…)

The authors introduced this new aspect as a relatively

minor extension and indeed it may be so in software

implementation: even if each G function operates in

a separate thread of CPU execution, extra reads of

RAM locations which store the message words did

not alter the overall scheme of data handling and just

added other operations to the sequence of already

running ones. In hardware, though, this led to

creation of a completely new, 512b wide data path

which was not needed neither in Slasa20 nor in

KECCAK organizations [7]-[8]. These paths are

presented in Figure 2 for the case when two rounds

of the iteration are unrolled (architectures x2 and

PPL2). This effectively doubled the total width of the

data path running along the round cascade from 512b

(the state) to 1024b (the state plus the message bits).

Distributing the message words was additionally

complicated by permutations 0…9 used by the

algorithm: in each round different permutation of mi

is used so switching between them required

supplementary multiplexers controlled by the round

counter. For example, in the x1 architecture each

G function module reads 10 different pairs of mi

words thus in total 16 multiplexers 10:1 needed to be

included, each switching 32b words. With loop

unrolling the number of multiplexers is proportional

the xk factor.

In the pipelined organizations further problem arose:

since the pipeline works with multiple sets of state

data, an analogous pipeline for the message bits had

to be created (the right part of Figure 2), again

doubling the number of registers required for data

storage.

Because of involved multiplexing of the message

words and their concurrent use it was not possible to

use any sort of RAM resources which are available

in the FPGA devices. Application of e.g. block RAM

modules present in the Spartan families would

greatly reduce register utilization but would be

possible only in size-limited architectures, e.g. if

each G function was computed sequentially in

consecutive clock cycles (8 clock ticks per round

computation) but this is not the direction tested in

this work. As a result, all designs prepared in our test

suite were fully autonomous, without any external

memory requirements.

Round

Round

h||s||t m

512b

Round

Round

m h||s||t

Figure 2. BLAKE specifics: distribution of message

bits in, e.g., x2 (left) and PPL2 (right) architectures

4. Results

All seven architectures: the basic iterative x1 plus

3 unrolled ones and their pipelined variants were

implemented and tested on two hardware platforms:

Spartan-3 and Spartan-6 from Xilinx – the inventor

of the FPGA devices and still their leading

manufacturer. The source files describing the design

were identical for both target platforms. In all cases

Sugier Jarosław

Implementing SHA-3 candidate BLAKE algorithm in Field Programmable Gate Arrays

198

the hardware module computing the complete

compression function was equipped with basic input

/ output registers providing means for sequential

hashing of the message of arbitrary length in 512b

chunks.

The code was automatically synthesized and

implemented by Xilinx ISE software with XST

synthesis tool, and targeted for two devices –

Spartan-3 XC3S5000-5 [10] and Spartan-6

XC6SLX150-3 [11], both in FGG676 package.

Devices XC3S5000 and XC6S150 were selected to

be sufficiently large to accommodate the most sized

x5 or PPL5 architectures. In terms of number of

occupied slices (which are elementary configurable

blocks in FPGA array, comprising a LUT function

generator and a one-bit register) they took max. 70%

of the resources in the Spartan-3 chip and max. 43%

in the Spartan-6 device. The smallest x1 design,

located on the other end of the spectrum, needed

16% of Spartan-3 and 11% of Spartan-6 arrays. This

shows that the size of FPGA devices did not limit the

implementations and did not affect the results.

4.1. Parameters of the implemented designs

Table 1 presents basic size and performance

characteristics of the 7 architectures obtained after

their implementation. Speed aspect is represented by

the value of the minimum clock period as it was

estimated after static timing analysis of the final,

fully routed design. From this parameter maximum

theoretical throughput of the message stream was

derived taking into account number of clock cycles

needed to compute the hash and, in case of pipelined

variants, number of data streams processed simulta-

neously in pipeline stages.

Two middle columns provide parameters which

illustrate effectiveness (or difficulties) of the

implementation process, i.e. how the complex logical

transformations of the algorithm were realized with

programmable resources of the array: for the longest

combinational path in the design the third column

gives number of logic elements it contains (LUT

generators) and the fourth – percentage of the

propagation delay incurred by the routing resources

(and not logic elements). Any significant rise in the

latter parameter above 50-70% signifies problems

with routing of propagation tracks between logic

resources in the array: if the connections are too

dense vs. distribution of logic elements, routing

becomes congested and implementation in the FPGA

array becomes problematic.

Size characteristics for each design are reported in

the last two columns of the table where total numbers

of utilized LUT generators and slices are given.

Table 1. Size and speed of the implemented designs

 T
cl

k
[n

s]

 T
h

ro
u
g

h
p
u

t

 [
G

b
p

s]

 L
ev

el
s

o
f

lo
g

ic

 R
o

u
ti

n
g

 d
el

ay

 [
%

]

 L
U

T
s

 S
li

ce
s

S
p

ar
ta

n
-3

x1 45.7 0.80 66 50.6 9155 5415

x2 88.9 0.82 118 51.2 16928 10039

x4 190 0.67 203 58.7 32933 19000

x5 244 0.70 258 61.7 41923 23232

PPL2 47.3 1.55 69 50.7 16817 10375

PPL4 44.9 3.26 62 50.4 14591 9821

PPL5 47.4 3.86 50 55.4 18066 11882

S
p

ar
ta

n
-6

x1 28.7 1.28 35 64.3 5621 2460

x2 67.7 1.08 70 72.3 10150 4409

x4 108 1.18 150 65.6 18994 8396

x5 185 0.92 131 78.1 24368 8833

PPL2 30 2.40 38 65.6 10918 4144

PPL4 33.7 4.33 35 69.0 20185 7246

PPL5 35.1 5.21 44 68.9 24236 9816

4.2. Performance evaluation

The data from Table 1 allows to evaluate whether

loop unrolling and pipelining have brought expected

results in the derivative organizations with regard to

their speed and size when the basic x1 design is used

as a point of reference. The evaluation will be based

on the following simple but rational estimation.

The minimum clock period – hence all performance

parameters – in any unrolled or pipelined

architecture should depend on the number of rounds

the state must go through in one clock cycle.

Assuming that in a perfectly regular implementation

of xk or PPLk architecture propagation time through

each instantiated round remains the same as in x1

case, the expected values of Tclk should be:

 Tclkxk  Tclkx1 · k

 TclkPPLk  Tclkx1
(6)

The same relations should hold also for the number

of logic levels included in the longest combinational

path of the design.

Using the estimations (6) one can compare them with

actual parameters of x2 ÷ PPL5 designs and this is

show in Figure 3: actual values of Tclk and number of

logic levels in the longest path were divided by the

estimations and the graph shows the quotient.

In Spartan-3 we can recognize that the actual

parameters behave in some predictable relation to the

estimates. The clock period is very close to

expectations: in the unrolled architectures there is

Journal of Polish Safety and Reliability Association

Summer Safety and Reliability Seminars, Volume 7, Number 1, 2016

199

slight increase from 97% (x2) to 107% (x5), so

effectiveness of the implementation somewhat

decreases with the number of rounds, but still

keeping 107% of the expected clock period in

a design with so long combinational paths as in x5 is

a very good result. Moreover, we can see that

increasing the length of combinational paths gives

more opportunity for optimization procedures which

can pack more logic into LUTs so the number of

levels of logic decreases; since this is accompanied

with an increase of routing part in the total delay

(Table 1) these two trends compensate each other.

Figure 3. Actual vs. expected performance

parameters of the derivative architectures

In the pipelined architectures there is no increase in

the longest path which in all cases spans just one

round so there is no such evident trend (with the

exception in levels of logic which again is better

packed in LUTs in larger designs) but the final Tclk

values remain very close to the estimations.

The situation is not so clear and predictable when the

same designs were implemented in the newer

Spartan-6 device. The x4 design does not follow the

overall trend and shows Tclk significantly shorter than

expected (apparently this design fit particularly well

structure of the array in the XC6SLX150 device) but

all other designs reached clock period which are

longer than expected, up to 129% in the x5 case.

Also it is difficult to see any trend in the “Levels of

logic” parameter. This could be related to the fact

that routing was not so straightforward in this device:

the routing part parameters in Table 1 approach

hazardously high levels of 70% (and in the

exceptionally good x4 implementation this value is

noticeably better than in x2 and x5) so the

implementation tools struggled to produce expected

results.

4.3. Size evaluation

In a manner analogous to that from the previous

point, one can estimate expected size parameters (i.e.

the number of occupied LUTs or slices) of the

derived architectures from the values of x1 case. In

both expansion mechanisms – unrolling and

pipelining – size of the whole design should increase

proportionally to the number of rounds instantiated

in hardware so:

 Sizexk  Sizex1 · k

 SizePPLk  Sizex1 · k
(7)

Additional registers which are added in the pipelined

organizations usually do not introduce any extra

burden in the FPGA arrays and therefore the above

estimations are assumed identical for both xk and

PPLk cases. Also the specific additional distribution

of the message words to each round, as discussed in

chapter 3.3, should scale according to these simple

proportions.

On the other hand, the x1 size includes some input /

output logic (e.g. the input multiplexers shown in

Figure 2) which is not replicated with the rounds so

the values computed from (7) can be somewhat

overestimated.

Figure 4. Actual vs. expected size parameters of the

derivative architectures

This overestimation is truly confirmed by Figure 4

where actual numbers of utilized LUTs and slices are

compared against the estimates (7): almost all

parameters at most oscillate close to 90% and, unlike

60%

80%

100%

120%

Tclk

Levels of log.

Spartan-3:

60%

80%

100%

120%

x2 x4 x5 PPL2 PPL4 PPL5

Tclk

Levels of log.

Spartan-6:

30%

50%

70%

90%

LUTs

Slices

Spartan-3:

30%

50%

70%

90%

x2 x4 x5 PPL2 PPL4 PPL5

LUTs

Slices

Spartan-6:

Sugier Jarosław

Implementing SHA-3 candidate BLAKE algorithm in Field Programmable Gate Arrays

200

in Figure 3, none exceeds 97%. Again the graph for

the older Spartan-3 family is more consistent: only

two largest pipelined architectures were significantly

optimized in size but all other ones use 906% of

expected LUTs or slices. In Spartan-6, like it was

already noted for Figure 3, routing close to

congestion made implementation results less

predictable but no bad cases were detected. On the

contrary, unlike speed characteristics the size

parameters at most are unexpectedly better than

estimations with e.g. slice utilization in x5 and PPL4

cases down to 72-74% of the estimates.

5. Conclusions

In this paper we have analyzed high-speed

implementations of the BLAKE hash functions based

on concepts of loop unrolling and pipelining. The

investigated basic iterative architecture can reach 0.8

(Spartan-3) or 1.3 (Spartan-6) Gbps throughput while

the largest pipelined one – respectively, 3.9 and 5.2

Gbps. This is on par with other known results, but

the aim of this work was not in delivering “yet-

another-k%-better” solution. Instead, we have

analyzed intrinsic internal characteristic of the

implementations generated by the tools to identify

how the fundamental mechanism of loop unrolling

with or without pipelining works in case of this

particular cipher.

Although BLAKE is often considered to be at its

core a modification of Slasa20 hash function the

introduced extensions are substantially more

significant for hardware implementations than for

software ones. The additional data paths provided for

distribution of message bits to every round instance,

which are not seen in Salsa20 or Keccak hashes,

made BLAKE implementations more difficult for the

tools.

Additionally, we have shown how the two FPGA

platforms – Spartan-3 and Spartan-6 – are fit for

implementation of this cipher. Although the newer

and faster Spartan-6 devices do deliver more capable

implementations in terms of raw throughput, routing

problems that start to appear on this platform can

make the results less predictable than they were in

the older Spartn-3 arrays.

References

[1] Aumasson, J. P., Henzen, L., Meier, W. et al.

(2010) SHA-3 proposal BLAKE, version 1.3,

[available at: https://www.131002.net/blake/

blake.pdf; retrieved March 2016].

[2] Bernstein, D. J. (2008). The Salsa20 family of

stream ciphers. New Stream Cipher Designs.

Springer, 84-97.

[3] ECRYPT II Project (2012). SHA-3 Hardware

Implementations, [available at: http://ehash.iaik.

tugraz.at/wiki/SHA-3_Hardware_

Implementations; retrieved March 2016].

[4] Gaj, K., Homsirikamol, E., Rogawski, M. et al.

(2012). Comprehensive evaluation of high-speed

and medium-speed implementations of five SHA-

3 finalists using Xilinx and Altera FPGAs. The

Third SHA-3 Candidate Conference, Washington,

DC, USA.

[5] Gaj, K., Southern, G., & Bachimanchi, R. (2007).

Comparison of hardware performance of selected

Phase II eSTREAM candidates. Proc. State of the

Art of Stream Ciphers Workshop, eSTREAM,

ECRYPT Stream Cipher Project, Report. 26,

2007.

[6] Junkg, B. & Apfelbeck, J. (2011). Area-efficient

FPGA implementations of the SHA-3 finalists.

2011 International Conference on Reconfigurable

Computing and FPGAs (ReConFig), IEEE, 235-

241.

[7] Sugier, J. (2013). Low-cost hardware

implementations of Salsa20 stream cipher in

programmable devices. Journal of Polish Safety

and Reliability Association, Summer Safety and

Reliability Seminars 4, 1, 121-128.

[8] Sugier, J. (2014). Low cost FPGA devices in high

speed implementations of Keccak-f hash

algorithm. Advances in Intelligent and Soft

computing: New Results in Dependability and

Complex Systems. Proc. 9th Int. Conf.

Dependability and Complex Systems DepCoS-

RELCOMEX, Springer 286, 433-442.

[9] Tillich, S., Feldhofer, M., Issovits, W., et al.

(2009). Compact hardware implementations of

the SHA-3 candidates ARIRANG, BLAKE, Grøstl,

and Skein. IACR Cryptology ePrint Archive, 349.

[10] Xilinx, Inc. (2009). Spartan-3 Family Data Sheet,

[available at: www.xilinx.com (ds099.pdf);

retrieved March 2016].

[11] Xilinx, Inc. (2011). Spartan-6 Family Overview. ,

[available at: www.xilinx.com (ds160.pdf);

retrieved March 2016].

[12] Yan, J., & Heys, H. M. (2007). Hardware

implementation of the Salsa20 and Phelix stream

ciphers. Proc. Canadian Conference on Electrical

and Computer Engineering CCECE 2007. IEEE,

1125-1128.

