Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
To improve accuracy and efficiency of forward modeling in the frequency domain, a 125-point finite-difference scheme is proposed. At present, the optimized difference format based on the rotating coordinate system is widely used, but it only suitable for equally sampling interval, and the optimized difference format based on the average-derivative method can be applied to different spaced sampling while improving the sampling accuracy. In this paper, we firstly introduce a 125-point optimized scheme for the three dimensional scalar wave equation. Then, according to the optimized difference scheme, the 125-point optimized difference coefficient is calculated for different spatial sampling spacing ratios. Compared with the optimal 27-point scheme, grid points number reduces from 4 points to 2.5 per wavelength, higher efficiency and suitable for unequal directional sampling intervals. In addition, the higher accuracy of 125-point scheme means it requires more storage and computation cost. Numerical results show that the optimized 125-point difference format has higher accuracy than the classical 27-point difference format.
Wydawca
Czasopismo
Rocznik
Tom
Strony
71--88
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
- School of Geosciences, China University of Petroleum (East China), Qingdao 266580, Shandong, China
- Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, Shandong, China
autor
- School of Geosciences, China University of Petroleum (East China), Qingdao 266580, Shandong, China
- Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, Shandong, China
autor
- School of Geosciences, China University of Petroleum (East China), Qingdao 266580, Shandong, China
- Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, Shandong, China
autor
- School of Geosciences, China University of Petroleum (East China), Qingdao 266580, Shandong, China
- Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, Shandong, China
autor
- School of Geosciences, China University of Petroleum (East China), Qingdao 266580, Shandong, China
- Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, Shandong, China
Bibliografia
- 1. Berenger PJ (1994) A perfectly matched layer for absorption of electromagnetic waves. Phys Plasmas 2(114):185–200
- 2. Cao SH, Chen JB (2012) A 17-point scheme and its numerical implementation for high-accuracy modeling of frequency-domain acoustic equation. Chin J Geophys 55(10):3440–3449 (in Chinese)
- 3. Chen J-B (2012) An average-derivative optimal scheme for frequency-domain scalar wave equation. Geophysics 77(6):T201–T210
- 4. Chen J-B (2014) A 27-point scheme for a 3D frequency-domain scalar wave equation based on an average-derivative method. Geophys Prospect 62:258–277
- 5. Chen J-B, Cao J (2016) Modeling of frequency-domain elastic-wave equation with an average-derivative optimal method. Geophysics 81(6):T339–T356
- 6. Fan N, Zhao L-F, Xie X-B, Tang X-G, Yao Z-X (2017) A general optimal method for a 2D frequency-domain finite-difference solution of scalar wave equation. Geophysics 82(3):T121–T132. https://doi.org/10.1190/geo2016-0457.1
- 7. Jo C‐H, Shin C, Suh JH (1996) An optimal 9‐point finite‐difference frequency‐space 2-D scalar wave extrapolator. Geophysics 61(2):529–537. https://doi.org/10.1190/1.1443979
- 8. Liao J, Wang H (2009) 2-D elastic wave modeling with frequency-space 25-point finite-difference operators. Appl Geophys 6(3):P259–P266
- 9. Liu Y (2020) Acoustic and elastic finite-difference modeling by optimal variable-length spatial operators. Geophysics 85(2):T57–T70
- 10. Liu L, Liu H, Liu HW (2013) Optimal 15-point finite difference forward modeling in the frequency-space domain. Chin J Geophys 56(2):644–652 (in Chinese)
- 11. Marfurt KJ (1984) Accuracy of finite‐difference and finite‐element modeling of the scalar and elastic wave equations. Geophysics 49(5):533–549. https://doi.org/10.1190/1.1441689
- 12. Min D-J, Shin C, Kwon B-D (2000) Improved frequency-domain elastic wave modeling using weighted-averaging difference operators. Geophysics 65(3):884–895
- 13. Operto S, Virieux J, Amestoy P et al (2007) 3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: a feasibility study. Geophysics 72(5):SM195–SM211
- 14. Pratt RG (1990a) Inverse theory applied to multi-source cross-hole tomography. Part 2: elastic wave-equation method. Geophys Prospect 38(3):311–329. https://doi.org/10.1111/j.1365-2478.1990.tb01847.x
- 15. Pratt RG (1990b) Frequency‐domain elastic wave modeling by finite differences: a tool for crosshole seismic imaging. Geophysics 55(5):626–632. https://doi.org/10.1190/1.1442874
- 16. Pratt RG, Worthington MH (1990) Inverse theory applied to multi-source cross-hole tomography. Part 1: acoustic wave-equation method. Geophys Prospect 38(3):287–310. https://doi.org/10.1111/j.1365-2478.1990.tb01846.x
- 17. Shin C, Sohn H (1998) A frequency‐space 2-D scalar wave extrapolator using extended 25-point finite‐difference operator. Geophysics 63(1):289–296. https://doi.org/10.1190/1.1444323
- 18. Stekl I, Pratt RG (1998) Accurate viscoelastic modeling by frequency-domain finite differences using rotated operators. Geophysics 63(5):1779–1794
- 19. Tang X, Liu H, Zhang H, Liu L, Wang Z (2015) An adaptable 17-point scheme for high-accuracy frequency-domain acoustic wave modeling in 2D constant density media. Geophysics 80(6):T211–T221. https://doi.org/10.1190/geo2014-0124.1
- 20. Wu GC, Liang K (2005) Quasi P-wave forward modeling in frequency-space domain in VTI media. OGP 40(5):535–545
- 21. Wu GC, Luo MC, Liang K (2007) Frequency-space domain finite difference numerical simulation of elastic wave in TTI media. J Jilin Univ (Earth Sci Ed) 37(5):1023–1033
- 22. Yao G, Wu D, Debens HA (2016) Adaptive finite-difference for seismic wavefield modeling in acoustic media. Sci Rep 6:30302
- 23. Yin W, Yin XY, Wu GC et al (2006) The method of finite difference of high precision elastic wave equations in the frequency domain and wavefield simulation. Chin J Geophys 49(2):561–568 (in Chinese)
- 24. Yue XP, Bai CY, Yue CW (2017) A 17-point difference scheme for 2D frequency-domain elastic wave and modeling. Geophys Explor 41(2):299–305
- 25. Zhang JH, Yao ZX (2012) Optimized finite-difference operator for broadband seismic wave modeling. Geophysics 78(1):A13–A18
- 26. Zhang H, Liu H, Liu L et al (2014) Frequency domain acoustic equation high-order modeling based on average-derivative method. Chin J Geophys 57(5):1599–1611 (in Chinese)
- 27. Zhou C, Liu JP, Luo YH et al (2014) 2D full-wavefield modeling in frequency domain using finite-difference. OGP 49(2):278–287
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-decf124d-fd05-41d1-82d6-90bdaf4dcac2