PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A review of recent progress in mechanical and corrosion properties of dual phase steels

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
New concepts proposed for processing of dual phase (DP) steels as one of the main classes of advanced high-strength steels (AHSSs) to enhance their mechanical properties (strength–ductility combination) and corrosion resistance were introduced. The current review covers (I) the processing routes to obtain the ferritic–martensitic microstructures, (II) parameters of intercritical annealing (IA) treatment, (III) primary thermomechanical treatments, and (IV) post processing. First, the principal heat treatment methods, i.e., step quenching, intermediate quenching, and intercritical annealing of ferritic–pearlitic steel, as well as the partitioning of manganese were critically discussed. Then, the effects of holding time at the intercritical annealing temperature on the austenitization, grain coarsening kinetics, abnormal grain growth, and volume fraction of martensite were summarized. Next, the importance of cold deformation (notably rolling) and heating rate for the development of fine-grained DP microstructures (with chain-networked martensitic islands) through recrystallization and modification of the preferred nucleation sites for the austenite phase was discussed. Moreover, the applications of severe plastic deformation techniques (such as constrained groove pressing), thermal cycling (multi-step or repetitive intercritical annealing), and spheroidization heat treatment were discussed. Finally, the impacts of tempering, quench aging, and bake hardening on the properties of DP steel were reviewed. This short overview shows the opportunities that the conventional and innovative processing routes can offer for the potential industrial applications of DP steels, especially in the lightweight car body for the automotive industry to address the safety, fuel consumption, and air pollution issues.
Rocznik
Strony
309--322
Opis fizyczny
Bibliogr. 78 poz., rys., wykr.
Twórcy
  • School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, PO Box 11155-4563, Tehran, Iran
  • School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, PO Box 11155-4563, Tehran, Iran
  • School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, PO Box 11155-4563, Tehran, Iran
  • Department of Mechanical Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
Bibliografia
  • [1] Kuziak R, Kawalla R, Waengler S. Advanced high strength steels for automotive industry. Arch Civ Mech Eng. 2008;8:103–17.
  • [2] Lesch C, Kwiaton N, Klose FB. Advanced high strength steels (AHSS) for automotive applications—tailored properties by smart microstructural adjustments. Steel Res Int. 2017;88:1700210.
  • [3] Keeler S, Kimchi M, Mooney PJ. Advanced high-strength steels application guideline, Technical Report 6.0, World Auto Steel, 2017.
  • [4] Zhao J, Jiang Z. Thermomechanical processing of advanced high strength steels. Prog Mater Sci. 2018;94:174–242.
  • [5] Tasan CC, Diehl M, Yan D, Bechtold M, Roters F, Schemmann L, Zheng C, Peranio N, Ponge D, Koyama M, Tsuzaki K, Raabe D. An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design. Annu Rev Mater Res. 2015;45:19.1–19.41.
  • [6] Liu L, He B, Huang M. The role of transformation-induced plasticity in the development of advanced high strength steels. Adv Eng Mater. 2018;20:1701083.
  • [7] De Cooman BC, Estrin Y, Kim SK. Twinning-induced plasticity (TWIP) steels. Acta Mater. 2018;142:283–362.
  • [8] Nasiri Z, Ghaemifar S, Naghizadeh M, Mirzadeh H. Thermal mechanisms of grain refinement in steels: a review. Met Mater Int. 2020. https ://doi.org/10.1007/s1254 0-020-00700 -1(in press).
  • [9] Nanda T, Singh V, Singh V, Chakraborty A, Sharma S. Third generation of advanced high-strength steels: processing routes and properties. J Mater Des Appl. 2019;233:209–38.
  • [10] Gorain N, Walunj MG, Soni MK, Ravi KB. Effect of continuous annealing process on various structure parameters of martensite of dual-phase steels. Arch Civ Mech Eng. 2020;20:29.
  • [11] Dutta T, Dey S, Datta S, Das D. Designing dual-phase steels with improved performance using ANN and GA in tandem. Comput Mater Sci. 2019;157:6–16.
  • [12] Bleck W, Guo X, Ma Y. The TRIP effect and its application in cold formable sheet steels. Steel Res Int. 2017;88:1700218.
  • [13] Azizi G, Mirzadeh H, Parsa MH. The effect of primary thermo-mechanical treatment on TRIP steel microstructure and mechanical properties. Mater Sci Eng A. 2015;639:402–6.
  • [14] Kheiri S, Mirzadeh H, Naghizadeh M. Tailoring the microstructure and mechanical properties of AISI 316L austenitic stainless steel via cold rolling and reversion annealing. Mater Sci Eng A. 2019;759:90–6.
  • [15] Wang L, Benito JA, Calvo J, Cabrera JM. Equal channel angu-lar pressing of a TWIP steel: microstructure and mechanical response. J Mater Sci. 2017;52:6291–309.
  • [16] Radwanski K, Kuziak R, Rozmus R. Structure and mechanical properties of dual-phase steel following heat treatment simulations reproducing a continuous annealing line. Arch Civ Mech Eng. 2019;19:453–68.
  • [17] Keleştemur O, Yıldız S. Effect of various dual-phase heat treatments on the corrosion behavior of reinforcing steel used in the reinforced concrete structures. Constr Build Mater. 2009;23:78–84.
  • [18] Das D, Chattopadhyay PP. Influence of martensite morphology on the work-hardening behavior of high strength ferritemar-tensite dual-phase steel. J Mater Sci. 2009;44:2957–65.
  • [19] Balbi M, Alvarez-Armas I, Armas A. Effect of holding time at an intercritical temperature on the microstructure and tensile properties of a ferrite–martensite dual phase steel. Mater Sci Eng A. 2018;733:1–8.
  • [20] Jamei F, Mirzadeh H, Zamani M. Synergistic effects of holding time at intercritical annealing temperature and initial microstructure on the mechanical properties of dual phase steel. Mater Sci Eng A. 2019;750:125–31.
  • [21] Kalhor A, Mirzadeh H. Tailoring the microstructure and mechanical properties of dual phase steel based on the initial microstructure. Steel Res Int. 2017;88:1600385.
  • [22] Soleimani M, Mirzadeh H, Dehghanian C. Processing route effects on the mechanical and corrosion properties of dual phase steel. Met Mater Int. 2020;26:882–90.
  • [23] Ashrafi H, Shamanian M, Emadi R, Saeidi N. Examination of phase transformation kinetics during step quenching of dual phase steels. Mater Chem Phys. 2017;187:203–17.
  • [24] Sun S, Pugh M. Manganese partitioning in dual-phase steel during annealing. Mater Sci Eng A. 2000;276:167–74.
  • [25] Sun MY, Wang XL, Wang ZQ, Wang XM, Li XC, Yan L, Misra RDK. The critical impact of intercritical deformation on variant pairing of bainite/martensite in dual-phase steels. Mater Sci Eng A. 2020;771:138668.
  • [26] Davies RG. Influence of martensite composition and content on the properties of dual phase steels. Metall Trans A. 1978;9:671–9.
  • [27] Alibeyki M, Mirzadeh H, Najafi M, Kalhor A. Modification of rule of mixtures for estimation of the mechanical properties of dual-phase steel. J Mater Eng Perform. 2017;26:2683–8.
  • [28] Maleki M, Mirzadeh H, Zamani M. Effect of intercritical annealing on mechanical properties and work-hardening response of high formability dual phase steel. Steel Res Int. 2018;89:1700412.
  • [29] Soleimani M, Mirzadeh H, Dehghanian C. Phase transformation mechanism and kinetics during step quenching of st37 low carbon steel. Mater Res Express. 1165f;6:1165f2.
  • [30] Soleimani M, Mirzadeh H, Dehghanian C. Unraveling the effect of martensite volume fraction on the mechanical and corrosion properties of low carbon dual phase steel. Steel Res Int. 2020;91:1900327.
  • [31] Kumar S, Kumar A, Madhusudhan VR, Sah R, Manjini S. Mechanical and electrochemical behavior of dual-phase steels having varying ferrite–martensite volume fractions. J Mater Eng Perform. 2019;28:3600–13.
  • [32] Zhang C, Cai D, Liao B, Zhao T, Fan Y. A study on the dual-phase treatment of weathering steel 09CuPCrNi. Mater Lett. 2004;58:1524–9.
  • [33] Osório WR, Peixoto LC, Garcia LR, Garcia A. Electrochemical corrosion response of a low carbon heat treated steel in a NaCl solution. Mater Corros. 2009;60:804–12.
  • [34] Park JH, Tomota Y, Wey M-Y. Suppression of grain growth in dual phase steels. Mater Sci Technol. 2002;18:1517–23.
  • [35] Nikkhah S, Mirzadeh H, Zamani M. Fine tuning the mechanical properties of dual phase steel via thermomechanical processing of cold rolling and intercritical annealing. Mater Chem Phys. 2019;230:1–8.
  • [36] Speich GR, Demarest VA, Miller RL. Formation of austenite during intercritical annealing of dual-phase steels. Metall Mater Trans A. 1981;12:1419–28.
  • [37] Najafkhani F, Mirzadeh H, Zamani M. Effect of intercritical annealing conditions on grain growth kinetics of dual phase steel. Met Mater Int. 2019;25:1039–46.
  • [38] Tamura I, Sekine H, Tanaka T, Ouchi C. Thermomechanical processing of high-strength low-alloy steels. London: Butterworths; 1988.
  • [39] Humphreys FJ, Hatherly M. Recrystallization and related annealing phenomena. 2nd ed. Amsterdam: Elsevier; 2004.
  • [40] Maleki M, Mirzadeh H, Zamani M. Effect of intercritical annealing time at pearlite dissolution finish temperature (Ac1f) on mechanical properties of low-carbon dual-phase steel. J Mater Eng Perform. 2019;28:2178–83.
  • [41] Tavakoli M, Mirzadeh H, Zamani M. Ferrite recrystallization and intercritical annealing of cold-rolled low alloy medium carbon steel. Mater Sci Technol. 2019;35:1932–41.
  • [42] Zamani M, Mirzadeh H, Ghasemi HM. Mechanical properties and fracture behavior of intercritically annealed AISI 4130 chromoly steel. Mater Res Express. 2018;5:066548.
  • [43] Pawłowski B. Critical points of hypoeutectoid steel-prediction of the pearlite dissolution finish temperature Ac1f. J Achiev Mater Manuf Eng. 2011;49:331–7.
  • [44] Nouroozi M, Mirzadeh H, Zamani M. Effect of microstructural refinement and intercritical annealing time on mechanical properties of high-formability dual phase steel. Mater Sci Eng A. 2018;736:22–6.
  • [45] Azizi-Alizamini H, Militzer M. Formation of ultrafine grained dual phase steels through rapid heating. ISIJ Int. 2011;51:958–64.
  • [46] Mirzadeh H, Alibeyki M, Najafi M. Unraveling the initial microstructure effects on mechanical properties and work-hardening capacity of dual phase steel. Metall Mater Trans A. 2017;48:4565–73.
  • [47] Ghatei Kalashami A, Kermanpur A, Ghassemali E, Najafizadeh A, Mazaheri Y. The effect of Nb on texture evolutions of the ultrafine-grained dual-phase steels fabricated by cold rolling and intercritical annealing. J Alloys Compd. 2017;694:1026–35.
  • [48] Najafi M, Mirzadeh H, Alibeyki M. Improved mechanical properties of structural steel via developing bimodal grain size distribution and intercritical heat treatment. J Mater Eng Perform. 2019;28:5409–14.
  • [49] Zhang J, Di H, Deng Y, Misra RDK. Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite-ferrite dual phase steel. Mater Sci Eng A. 2015;627:230–40.
  • [50] Nakada N, Arakawa Y, Park KS, Tsuchiyama T, Takaki S. Dual phase structure formed by partial reversion of cold-deformed martensite. Mater Sci Eng A. 2012;553:128–33.
  • [51] Deng Y, Di H, Misra RDK. On significance of initial microstructure in governing mechanical behavior and fracture of dual-phase steels. J Iron Steel Res Int. 2018;25:932–42.
  • [52] Ueji R, Tsuji N, Minamino Y, Koizumi Y. Ultragrain refinement of plain low carbon steel by cold-rolling and annealing of martensite. Acta Mater. 2002;50:4177–89.
  • [53] Najafi M, Mirzadeh H, Alibeyki M. Toward unraveling the mechanisms responsible for the formation of ultrafine grained microstructure during tempering of cold rolled martensite. Mater Sci Eng A. 2016;670:252–5.
  • [54] Thomas LS, Matlock DK. Formation of banded microstructures with rapid intercritical annealing of cold-rolled sheet steel. Metall Mater Trans A. 2018;49:4456–73.
  • [55] Deng YG, Li Y, Di H, Misra RDK. Effect of heating rate during continuous annealing on microstructure and mechanical properties of high-strength dual-phase steel. J Mater Eng Perform. 2019;28:4556–644.
  • [56] Son Y, Lee YK, Park KT, Lee CS, Shin DH. Ultrafine grained ferrite/martensite dual phase steels fabricated via equal channel angular pressing: microstructure and tensile properties. Acta Mater. 2005;53:3125–34.
  • [57] Ormsuptave N, Uthaisangsuk V. Effect of fine grained dual phase steel on bake hardening properties. Steel Res Int. 2017;83:1600150.
  • [58] Nasiri Z, Mirzadeh H. Enhancement of work-hardening behavior of dual phase steel by heat treatment. Materialwiss Werkstofftech. 2018;49:1081–6.
  • [59] Nasiri Z, Mirzadeh H. Spheroidization heat treatment and intercritical annealing of low carbon steel. J Min Metall Sect B. 2019;55:405–11.
  • [60] Khebreh Farshchi Y, Mirzadeh H, Tavakoli M, Zamani M. Microstructure tailoring for property improvements of DP steel via cyclic intercritical annealing. Mater Res Express. 2019;6:126513.
  • [61] Ghaemifar S, Mirzadeh H. Refinement of banded structure via thermal cycling and its effects on mechanical properties of dual phase steel. Steel Res Int. 2018;89:1700531.
  • [62] Ghaemifar S, Mirzadeh H. Enhanced mechanical properties of dual phase steel by repetitive intercritical annealing. Can Metall Q. 2017;56:459–63.
  • [63] Xie ZJ, Han G, Zhou WH, Wang XL, Shang CJ, Misra RDK. A novel multistep intercritical heat treatment induces multiphase microstructure with ultra-low yield ratio and high ductility in advanced high-strength steel. Scripta Mater. 2018;155:164–8.
  • [64] Zhou WH, Wang XL, Venkatsurya PKC, Guo H, Shang CJ, Misra RDK. Structure–mechanical property relationship in a high strength low carbon alloy steel processed by two-step intercritical annealing and intercritical tempering. Mater Sci Eng A. 2014;607:569–77.
  • [65] Ashrafi H, Shamanian M, Emadi R, Saeidi N. A novel and simple technique for development of dual phase steels with excellent ductility. Mater Sci Eng A. 2017;680:197–202.
  • [66] Fonstein N, Kapustin M, Pottore N, Gupta I, Yakubovsky O. Factors that determine the level of the yield strength and the return of the yield-point elongation in low-alloy ferrite–martensite steels. Phys Met Metallogr. 2007;104:315–23.
  • [67] Mazinani M, Poole WJ. Effect of martensite plasticity on the deformation behavior of a low-carbon dual-phase steel. Metall Mater Trans A. 2007;38:328–39.
  • [68] Keleştemur O, Aksoy M, Yildiz S. Corrosion behavior of tempered dual-phase steel embedded in concrete. Int J Miner Metall Mater. 2009;16:43–50.
  • [69] Samuel FH. Effect of dual-phase treatment and tempering on the microstructure and mechanical properties of a high strength low alloy steel. Mater Sci Eng. 1985;75:51–66.
  • [70] Soleimani M, Mirzadeh H, Dehghanian C. Effects of tempering on the mechanical and corrosion properties of dual phase steel. Mater Today Commun. 2020;22:100745.
  • [71] Wang S, Yu H, Zhou T, Wang L. Synergetic effects of ferrite content and tempering temperature on mechanical properties of a 960 MPa grade HSLA steel. Materials. 2018;11:2049.
  • [72] Nikkhah S, Mirzadeh H, Zamani M. Improved mechanical properties of mild steel via combination of deformation, intercritical annealing, and quench aging. Mater Sci Eng A. 2019;756:268–71.
  • [73] Zamani M, Mirzadeh H, Maleki M. Enhancement of mechanical properties of low carbon dual phase steel via natural aging. Mater Sci Eng A. 2018;734:178–83.
  • [74] Zamani M, Mirzadeh H, Ghasemi HM. Dependency of natural aging on the ferritfoe grain size in dual phase steel. Metall Mater Trans A. 2019;50:4961–4.
  • [75] Chang PH. Temper-aging of continuously annealed low carbon dual phase steel. Metall Trans A. 1983;15:73–86.
  • [76] Ramazani A, Bruehl S, Gerber T, Bleck W, Prahl U. Quantification of bake hardening effect in DP600 and TRIP700 steels. Mater Des. 2014;57:479–86.
  • [77] Waterschoot T, De Cooman BC, De AK, Vandeputte S. Static strain aging phenomena in cold-rolled dual-phase steels. Metall Mater Trans A. 2003;34:781–91.
  • [78] Ormsuptave N, Uthaisangsuk V. Modeling of bake-hardening effect for fine grain bainite-aided dual phase steel. Mater Des. 2017;118:314–29.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-decd7e0a-43b1-4562-9f01-0fb8c4ee7cd9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.