PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Magnetoimpedance effect in amorphous and nanocrystalline alloys based on iron

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The main purpose of the paper is to study magnetic, electrical and plastic properties of the selected group of amorphous alloys in the context of their application as magnetoimpedance sensors. Design/methodology/approach: The presented results were obtained by applying different magnetic methods (low field permeability measurements, magnetic relaxation, magnetization versus magnetic field, magnetization in saturation versus temperature, magnetoimpedance effect versus static magnetic field and/or frequency), resistivity versus temperature and Young’s modulus versus temperatures. Structural changes taking place in annealed samples were examined by making use of X-ray diffraction method and high resolution electron microscopy observations. Findings: It was shown that in all examined amorphous alloys soft magnetic properties can be enhanced by applying a suitable 1-h annealing at temperatures Top listed in Table 1. After annealing at this characteristic temperature magnetic permeability in relation to the as quenched state increases more than 20 times and noncontact magnetoimpedance effect (ΔZ/Z)ncmax is of the order of 104%. This effect can be explained based on the random anisotropy model supplemented by energy terms describing magnetoelastic energy and stabilization energy related to free volume content. For the alloys for which the optimized microstructure corresponds to the relaxed amorphous phase the plastic deformation corresponding to formation of brittle cracks is much higher than for the examined nanostructured alloys. In the frequency range from 700 kHz to 2 MHz magnetoimpedenace effect (ΔZ/Z)ncmax is approximately constant. Research limitations/implications: Searching of new soft magnetic materials in the group of amorphous alloys based on iron obtained by melt spinning can give a promising result. For example one can obtain very good soft magnets showing also good mechanical properties. Practical implications: Based on the presented results one can obtain very good soft magnetic material with low field relative magnetic permeability of about 16 000 (Fe74Cu1Zr3Si13B9). In the examined group of amorphous alloys the best candidate for magnetoimpedane sensor applications is the Fe75,75Ag0,25Nb2B22 alloy for which (ΔZ/Z)ncmax = 104% and plastic deformation εop=0.015. Silver as an alloying addition to the base Fe-Nb-B alloy significantly improves the alloy plasticity. Originality/value: It was shown that the examined amorphous alloys based on iron after applying a suitable thermal annealing can be used as promising materials for nagnetoimpedance sensors.
Rocznik
Strony
166--176
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Institute of Materials Sciences, University of Silesia, ul. Bankowa 12, 40-007 Katowice, Poland
Bibliografia
  • [1] L.A. Dobrzański, M. Drak, Hard magnetic composite materials Nd-Fe-B with additions of iron and X2CrNiMo-17-12-2 steel, Journal of Alloys and Compounds 449/1-2 (2008) 88-92.
  • [2] R. Hasegawa, Advances in amorphous and nanocrystalline magnetic materials, Journal of Magnetism and Magnetic Materials 304 (2006) 187-191.
  • [3] B. Tomczuk, D. Koteras, Magnetic flux distribution in the amorphous modular transformers, Journal of Magnetism and Magnetic Materials 323 (2011) 1611-1615.
  • [4] G. Haneczok, R. Wroczyński, P. Kwapuliński, A. Chrobak, Z. Stokłosa, J. Rasek, Electro/magnetic shielding effectiveness of soft magnetic Fe80Nb6B14 amorphous alloy, Journal of Materials Processing Technology 209 (2009) 2356-2360.
  • [5]A. Chrobak, A. Kaleta, P. Kwapuliński, M. Kubisztal, G. Haneczok, Magnetic shielding effectiveness of iron-based amorphous alloys and nanocrystalline composites, Proceedings of the International Conference on Soft Magnetic Materials, SMM20, IEEE Transactions on Magnetics, doi: 10.1109/TMAG.2011.2172587, Greece, 2011.
  • [6] Manh-Huong Phan, Hua-Xin Peng, Giant magneto-impedance materials: Fundamentals and applications, Progress in Materials Science 53 (2008) 323-420.
  • [7] L. Kraus, Off-diagonal magnetoimpedance in stress-annealed amorphous ribbons Journal of Magnetism and Magnetic Materials 320 (2008) 746-749.
  • [8] M. Kuźmiński, K. Nesteruk, H.K. Lachowicz, Magnetic field meter based on giant magnetoimpedance effect, Sensors and ActuatorsA 141 (2008) 68-75.
  • [9] S.N. Kane, A. Gupta, T. Kulik, L. Kraus, Influence of intrinsic and induced anisotropy on magnetoimpedance effect in amorphous Co67Fe4Mo1.5Si16.5B11, Journal of Magnetism and Magnetic Materials 254-255 (2003) 498-500.
  • [10] S. Dwevedi, G. Markandeyulu, P.R. Ohodnicki, A. Leary, M.E. McHenry, Stress-MI and domain studies in Co-based nanocrystalline ribbons, Journal of Magnetism and Magnetic Materials 323 (2011) 1929-1933.
  • [11] N.A. Buznikov, A.S. Antonov, A.A. Rakhmanov, A model for torsion-stress effect on nonlinear magnetoimpedance in amorphous wires with negative magnetostriction, Journal of Magnetism and Magnetic Materials 323 (2011) 190-195.
  • [12] Yu Geliang, Bu Xiongzhu, Xiang Chao, Xu Hong, Design of a GMI magnetic sensor based on longitudinal excitation, Sensors and Actuators A 161 (2010) 72-77.
  • [13] Sheikh Manjura Hoque, A.K.M. Rezaul Haque, Md. Obaidur Rahman, N. H. Nghi, M.A. Hakim, Shireen Akhter, Ultra-soft magnetic properties and giant magnetoimpedance of Co68Fe4.5Si12.5B15, Journal of NonCrystalline Solids 357 (2011) 2109-2114.
  • [14] G. Haneczok, P. Kwapuliński, Z. Stokłosa, J. Rasek, R. Wroczyński, Archives of Materials Science 4 (2003) 373-391.
  • [15] F.X. Qin, H.X. Peng, V.V. Popov, M.H. Phan, Giant magneto-impedance and stress-impedance effects of microwire composites for sensing applications, Solid State Communications 151 (2011) 293-296.
  • [16] P. Delooze, L.V. Panina, D.J. Mapps, K. Ueno, H. Sano, Effect of transverse magnetic field on thin-film magneto impedance and application to magnetic recording, Journal of Magnetism and Magnetic Materials 272-276 (2004) 2266-2268.
  • [17] Lei Chen, Chen-Chen Bao, Hao Yanga, Ding Li, Chong Lei, Tao Wang, Heng-Yao Hu, Meng He, Yong Zhou, Da-Xiang Cui, A prototype of giant magnetoimpedance-based biosensing system for targeted detection of gastric cancer cells, Biosensors and Bioelectronics 26 (2011) 3246-3253.
  • [18] A.T. Le, N.Q. Hoa, P.D. Tam, D.G. Park, M.H. Phan, H. Srikanth, S.C. Yu, Enhancement of the giant magnetoimpedance effect and its magnetic response in ion-irradiated magnetic amorphous ribbons, Materials Science and Engineering B 166 (2010) 89-93.
  • [19] S. Dwevedi, G. Sreenivasulu, G. Markandeyulu, Contact and non-contact magnetoimpedance in amorphous and nanocrystalline Fe73.5Si13.5B8CuV3Al ribbons, Journal of Magnetism and Magnetic Materials 322 (2010) 311-314.
  • [20] A. Chrobak, D. Chrobak, G. Haneczok, P. Kwapuliński, Z. Kwolek, M. Karolus, Influence of Nb on the first stage of crystallization in the Fe86-xNbxB14 amorphous alloys, Materials Science and Engineering A 382 (2004) 401-406.
  • [21] D. Szewieczek, J. Tyrlik-Held, S. Lesz, Structure and mechanical properties of amorphous Fe84Nb7B9 alloy during crystallization, Journal of Achievements in Materials and Manufacturing Engineering 24 (2007) 87-90.
  • [22] P. Kwapulinski, Z. Stokłosa, J. Rasek, G. Badura, G. Haneczok, L. Pajak, J. Lelątko, Influence of alloying additions and annealing time on magnetic properties in amorphous alloys based on iron, Journal of Magnetism and Magnetic Materials 320 (2008) 778-782.
  • [23] Z. Stokłosa, P. Kwapuliński, J. Rasek, G. Badura, G. Haneczok, L. Pająk A. Kolano-Burian, Optimization of soft magnetic properties and crystallization in FeAgNbSiB, FeAgNbB and FeAgCoNbB amorphous alloys, Journal of Alloys and Compounds 507 (2010) 465-469.
  • [24] P. Kwapuliński, J. Rasek, Z. Stokłosa, G. Badura, B. Kostrubiec, G. Haneczok, Magnetic and mechanical properties In FeXSiB (X=Cu, Zr, Co) amorphous alloys, Archives of Materials Science and Engineering 31 (2008) 25-28.
  • [25] S. Flohrer, G. Herzer, Random and uniform anisotropy in soft magnetic nanocrystalline alloys, Journal of Magnetism and Magnetic Materials 322 (2010) 1511-1514.
  • [26] A. Chrobak, G. Haneczok, P. Kwapuliński, D. Chrobak, Z. Stokłosa, J. Rasek, Soft magnetic properties of the Fe72Co10Nb6B12 amorphous alloy, Journal of Alloys and Compounds 423 (2006) 77-80.
  • [27] T. Naohara, The role of metallic (M) elements in the ageing behavior of amorphous FeSiBM (M = Nb, Zr, or V) alloys, Acta materialia 46 (1998) 4601-4607.
  • [28]P. Kwapuliński, J. Rasek, Z. Stokłosa, G. Haneczok, Magnetic properties of amorphous and nanocrystalline alloys based on iron, Journal of Materials Processing Technology 157-158 (2004) 735-742.
  • [29] P. Kwapuliński, Z. Stokłosa, A. Chrobak, J. Rasek, G. Haneczok, Optimisation of soft magnetic properties in FeB and Fe-B-Si amorphous alloys obtained by melt spinning method, Acta Physica Polonica A 102 (2002) 309-316.
  • [30] P. Kwapuliński, A. Chrobak, G. Haneczok, Z. Stokłosa, J. Rasek, Structural relaxation In Fe86-xNbxB14amorphous alloys, Journal of Magnetism and Magnetic Materials 304 (2006) 654-656.
  • [31] G. Haneczok, J.E. Frąckowiak, A. Chrobak, P. Kwapuliński, J. Rasek, Magnetic permeability enhancement effect in the Fe86-xNbxB14 (x = 5, 6) amorphous alloys, Physica Status Solidi a 202 (2005) 2574-2581.
  • [32] H. Kronmüller, Theory of the coercive field in amorphous ferromagnetic alloys, Journal of Magnetism and Magnetic Materials 24 (1981) 159-167.
  • [33] G. Haneczok, Ł. Madej, A. Chrobak, P. Kwapuliński, Z. Stokłosa, J. Rasek, Influence of free volume on magnetoelastic coupling in iron-based amorphous alloys, Physica Scripta, 81 (2010) 025702.
  • [34] T. Górecki, Cz. Górecki, K. Książek, S. Wacke, Effective vacancy formation energy and the solute - vacancy binding energy in binary Cu - based alloys, Visnyk of the Lviv University, Series Khimichna 48/1 (2007) 88-94.
  • [35] L. Pešek, L.A. Dobrzański, P. Zubko, J. Konieczny, Mechanical properties of metallic ribbons investigated by depth sensing indentation technique, Journal of Magnetism and Magnetic Materials 304 (2006) 645-647.
  • [36] J. Konieczny, L.A. Dobrzański, L. Pešek, P. Zubko, Mechanical properties of Co based amorphous ribbons Journal of Achievements in Materials and Manufacturing Engineering 31 (2008) 254-261.
  • [37] K. Suzuki, J.M. Cadogan, Random magnetocrystalline anisotropy in two-phase nanocrystalline systems, Physical Review B 58 (1998) 2730.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-decabd69-0214-4ded-87a7-f7c23c24838b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.