PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Chromium-rich illite/smectite in the basal Balinka Conglomerate of the Upper Carboniferous-Permian Boskovice Basin (Bohemian Massif). Annales Societatis Geologorum Poloniae

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Upper Carboniferous polymictic Balinka Conglomerate was deposited along the western margin of the Boskovice Basin (eastern part of the Bohemian Massif). Angular aggregates of deep-green chromium-rich interstratified clay mineral R1-illite(0.8)/smectite (I/S) are present exclusively in the basal part of this unit. The textural position of chromium-bearing I/S (0.77–2.88 wt.% Cr2O3; 0.040–0.153 apfu Cr) in the conglomerate matrix indicates a genetic link with the highly altered chromium spinel, which is preserved in the relics. The source of Cr-rich spinelides was serpentinized peridotites in the adjacent Moldanubicum (Gföhl Unit). The formation of I/S is related to diagenetic processes in the conglomerate matrix. The fluids would have relatively high fugacity of CO2 and activity of K+. K/Ar ages of 284.1 ± 7.7 and 276.3 ± 7.4 Ma (lower Permian – Kungurian/Artinskian age) confirmed the diagenetic origin of this I/S.
Rocznik
Strony
195--210
Opis fizyczny
Bibliogr. 82 poz., fot., rys., tab., wykr.
Twórcy
  • Department of Mineralogy and Petrography, Moravian Museum, Zelnýtrh 6, 659 37, Brno, Czech Republic
  • Department of Mineralogy and Petrography, Moravian Museum, Zelný trh 6, 659 37, Brno, Czech Republic
  • Czech Geological Survey, branch Brno, Leitnerova 22, 602 00 Brno, Czech Republic
  • Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
  • Institute of Geological Sciences, Polish Academy of Sciences, Senacka 1, 31-002 Kraków, Poland
  • Institute of Geological Sciences, Polish Academy of Sciences, Senacka 1, 31-002 Kraków, Poland
  • Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
  • Department of Biology, Faculty of Education, Masaryk University, Poříčí 7, 603 00 Brno, Czech Republic
  • Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
Bibliografia
  • 1. Abbott, A. N., Löhr, S. & Trethewy, M., 2019. Are clay minerals the primary control on the oceanic rare earth element budget? Frontiers in Marine Science, 6: 1-19.
  • 2. Ajouyed, O., Hurel, C. & Marmier, N., 2011. Evaluation of the adsorption of hexavalent chromium on kaolinite and illite. Journal of Environmental Protection, 2: 1347-1352.
  • 3. Arai, S. & Akizawa, N., 2014. Precipitation and dissolution of chromite by hydrothermal solutions in the Oman ophiolite: New behavior of Cr and chromite. American Mineralogist, 99: 28-34.
  • 4. Barnes, S. J., 2000. Chromite in komatiites, II. Modification during greenschist to mid-amphibolite facies metamorphism. Journal of Petrology, 41: 387-409.
  • 5. Barnes, S. J. & Roeder, P. L., 2001. The range of spinel composition in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42: 2279-2302.
  • 6. Becker, H., 1997. Petrological constraints on the cooling history of high-temperature garnet peridotite massifs in lower Austria. Contributions to Mineralogy and Petrology, 128: 272-286.
  • 7. Belogub, E. V., Melekestseva, I. Y., Novoselov, K. A., Zabotina, M. V., Treťjakov, G. A., Zalykov, V. V. & Yuminov, A. M., 2017. Listvenite-related gold deposits of the South Urals (Russia): A review. Ore Geology Reviews, 85: 247-270.
  • 8. Buriánek, D., Bubík, M., Franců, J., Fürychová, P., Havlín, A., Gilíková, H., Janderková, J. Konečný, F., Krejčí, Z., Krumlová, H., Kryštofová, E., Kunceová, E., Müller, P., Otava, J., Paleček, M., Pecina, V., Poul, I., Sedláček, J., Skácelová, Z., Šrámek, J., Petrová, P., Verner, K., Večeřa, J. & Vít, J., 2020. Vysvětlivky k základní geologické mapě České republiky 1 : 25 000 list 24-341 Oslavany. Závěrečná zpráva. Unpublished MS Česká geologická služba, Praha, 257 pp. [In Czech.]
  • 9. Burley, S. D., Kantorowicz, J. D. & Waugh, B., 1985. Clastic diagenesis. Geological Society London Special Publications, 18: 189-226.
  • 10. Cathelineau, M. & Izquierdo, G., 1998. Temperature - composition relationships of authigenic micaceous minerals in the Los Azufres geothermal system. Contributions to Mineralogy and Petrology, 100: 418-428.
  • 11. Čepek, L., 1946. Tektonika Boskovické brázdy. Věstník Státního geologického ústavu Československé republiky, 20, 1-6: 128130. [In Czech.]
  • 12. Čopjaková, R., 2007. The Reflection of Provenance Changes in the Psefitic and Psammitic Sedimentary Fraction of the Myslejovice Formation (Heavy Mineral Analysis). Unpublished PhD Thesis, Masaryk University, Brno, 137 pp. [In Czech, with English summary.]
  • 13. Deocampo, D. M., 2015. Authigenic clay minerals in lacustrine mudstones. Special Paper of the Geological Society of America, 515: 49-64.
  • 14. Do Campo, N. & Nieto, F., 2005. Origin of mixed-layered (R1) muscovite-chlorite in an anchizonal slate from Puncoviscana Formation (Salta Province, Argentina). Clay Minerals, 40: 317-322.
  • 15. Ferenc, Š., Uher, P., Spišiak, J. & Šimonová, V., 2016. Chromium- and nickel-rich micas and associated minerals in listvenite from the Muránska Zdychava, Slovakia: products of hydrothermal metasomatic transformation of ultrabasic rock. Journal of Geosciences, 61: 239-254.
  • 16. Foord, E. E., Starkey, H. C., Taggart J. E., Jr. & Shawe, D. R., 1987. Reassessment of the volkonskoite-chromian smectite nomenclature problem. Clays and Clay Minerals, 35: 139-14.
  • 17. Franců, J., Sýkorová, I., Franců, E., Šafanda, J. & Malý, L., 1998. Vitrinite reflectance and pyrolytic properties of coals in the Boskovice Furrow as related to thermal and burial history. In: Pešek, J., Opluštil, S. & Pešková, J. (eds), Abstract VIII. Coal Geological Conference. Charles University, Prague, 20 pp.
  • 18. Garnier, J., Quantin, C., Guimaraes, E. & Becquer, T., 2008. Can chromite weathering be a source of Cr in soils? Mineralogical Magazine, 72: 49-53.
  • 19. Garver, J. I., Royce, P. R. & Smick, T. A., 1996. Chromium and nickel in shale of the Taconic foreland: a case study for the provenance of fine-grained sediments with an ultramafic source. Journal of Sedimentary Research, 66: 100-106.
  • 20. Hao, W., Chen, N., Sun, W., Mänd, K., Kirsimäe, K., Teitler, Y., Somelar, P., Robbins, L. J., Babechuk, M. G., Planavsky, N. J., Alessi, D. S. & Konhauser, K. O., 2022. Binding and transport of Cr(III) by clay minerals during the Great Oxidation Event. Earth and Planetary Science Letters, 584: 117503.
  • 21. Havlena, V., 1964. Geologie uhelných ložisek 2. Československá akademie věd, Praha, 437 pp. [In Czech.]
  • 22. Higueras, P., Oyarzun, R., Lunar, R., Sierra, J. & Parras, J., 1999. The Las Cuevas deposit, Almade'n district (Spain): Unusual case of deep-seated advanced argillic alteration related to mercury mineralization. Mineraleralium Deposita, 34: 211-214.
  • 23. Holzer, P., 2018. Model of depositional and erosional history of the Boskovice furrow. Unpublished MSc. Thesis, Masaryk University, Brno, 49 pp. [In Czech, with English summary.]
  • 24. Horton, D. G., 1985. Mixed-layer illite/smectite as a paleotemper- ature indicator in the Amethyst vein system, Creede district, Colorado, USA. Contributions to Mineralogy and Petrology, 91: 171-179.
  • 25. Hounslow, M. W., 1996. Ferrimagnetic Cr and Mn spinels in sediments: Residual magnetic minerals after diagenetic dissolution. Geophysical Research Letters, 23: 2823-2826.
  • 26. Houzar, S. & Hršelová, P., 2016. Research of Permo-Carboniferous sediments of the southern part of the Boskovice Graben; an overview (Part 1. History of Mining and Mineralogy). Acta Musei Moraviae, Scientiae Geologicae, 101: 3-32. [In Czech, with English summary.]
  • 27. Houzar, S., Hršelová, P., Gilíková, H., Buriánek, D. & Nehyba, S., 2017. Research of Permian-Carboniferous sediments of the southern part of the Boskovice Graben; an overview (Part 2. Geology and Petrography). Acta Musei Moraviae, Scientiae Geologicae, 102: 3-65. [In Czech, with English summary.]
  • 28. Houzar, S., Kopečná, P., Štelcl, J. & Vávra,V., 2013. Green chromium-bearing mica in Balinka Conglomerates of Rosice-Oslavany Formation (Upper Carboniferous) at Oslavany. Acta Musei Moraviae, Scientiae Geologicae, 98: 3-12. [In Czech, with English summary.]
  • 29. Hrdličková, K., Gilíková, H., Hanžl, P., Vít, J., Tomanová Petrová, P., Pecina, V., Buriánek, D., Večeřa, J., Kryštofová, E., Fmychová, P., Sedláčková, I., Baldík, V, Franců, J., Janderková, J., Kociánová, L., Kolejka, V., Konečný, F., Krejčí, O., Kunceová, E., Otava, J., Paleček, M., Sedláček, J., Šimůnek, Z., Dolníček, Z., Slobodník, M. & Šrámek, J., 2020. Vysvětlivky k základní geologické mapě České republiky 1: 25000, list 24-323 Veverská Bítýška. Unpublished MS, Česká geologická služba, Praha, 265 pp. [In Czech.]
  • 30. Hršelová, P., Houzar, S. & Buriánek, D., 2018. Chromium rich spinels of Upper Carboniferous Balinka Conglomerates from southern part of Boskovice Graben. Acta Musei Moraviae, Scientiae Geologicae, 103: 39-51. [In Czech, with English summary.]
  • 31. Hršelová, P., Houzar, S. & Štelcl, J., 2021. Corroded garnets in the association of heavy minerals of Balinka conglomerates: their morphology and chemical compositon (Upper Carboniferous, Boskovice Basin). Acta Musei Moraviae, Scientiae Geologicae, 106: 35-50. [In Czech, with English summary.]
  • 32. Inoue, A., Lanson, B., Fernandes, M., Sakharov, B., Murakami, T., Meunier, A. & Beaufort, D., 2005. Illite-smectite mixed-layer minerals in hydrothermal alteration of volcanic rocks: I. Onedimensional XRD structure analysis and characterisation of component layers. Clays and Clay Minerals, 53: 423-439.
  • 33. Inoue, A., Meunier, A. & Beaufort, D., 2004. Illite-smectite mixed-layer minerals in felsic volcaniclastic rocks from drill cores, Kakkonda, Japan. Clays and Clay Minerals, 52: 66-84.
  • 34. Jackson, M. L., 1979. Soil chemical analysis - advanced course, 2nd Ed. M. L. Jackson, Madison, WY, USA, 895 pp.
  • 35. Jagodzinski, H., 1949. Eindimensionale Fehlordnung in Kristallen und ihr Einfluss auf die Röntgeninterferenzen. I. Berechnung des Fehlordnungsgrades aus den Röntgenintensitäten. Acta Crystallographica, 2: 201-207.
  • 36. Jaroš, J., 1961. Geologický vývoj jižní části Boskovické brázdy. Práce Brněnské základny ČSAV, 32: 545-569. [In Czech.]
  • 37. Ji, J. & Browne, P. R. L., 2000. Relationship between illite crystallinity and temperature in active geothermal systems of New Zealand. Clays and Clay Minerals, 48: 139-144.
  • 38. Khoury, H. N., 2012. Long term analogue of carbonation in travertine from Uleimat quarries, central Jordan. Environmental Earth Sciences, 65: 1909-1916.
  • 39. Khoury, H. N. & Al-Zoubi, A. S., 2014. Origin and characteristics of Cr-smectite from Suweileh area, Jordan. Applied Clay Science, 90: 43-52.
  • 40. Kimball, K. L., 1990. Effects of hydrothermal alteration on the composition of chromian spinels. Contribution to Mineralogy and Petrology, 105: 337-346.
  • 41. Kratinová, L., 2009. The Alteration of Rocks of Boskovice Furrow - A Product of the Fossil Hydrothermal System? Unpublished MSc Thesis, Masaryk University, Brno, 75 pp. [In Czech, with English summary.]
  • 42. Králík, J. & Malý, L., 1987. Tufogenní horniny permokarbonu jižní části boskovické brázdy. In: Malý, L. (ed.), Sborník III. konference Problematika geologické stavby uhelných ložisek ve velkých hloubkách. ČSVTS, Zbýšov u Brna, pp. 96-101. [In Czech.]
  • 43. Lanson, B., Beaufort, D., Berger, G., Bauer, A., Cassagnabere, A. & Meunier, A., 2002. Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: a review. Clay Minerals, 37: 1-22.
  • 44. Lanson, B., Sakharov, B. A., Claret, F. & Drits, V. A., 2009. Diagenetic smectite-to-illite transition in clay-rich sediments: A reappraisal of X-ray diffraction results using the multi-specimen method. American Journal of Science, 309: 476-516.
  • 45. Maksimovic, Z. & Brindley, G. W., 1980. Hydrothermal alteration of a serpentinite near Takovo, Yugoslavia, to chromium-bearing illite/smectite, kaolinite, tosudite, and halloysite. Clays and Clay Minerals, 28: 295-302.
  • 46. Malý, L., 1993. Formování sedimentační pánve permokarbonu boskovické brázdy a vývoj svrchnostefanské sedimentace v rosicko-oslavanské pánvi. In: Přichystal, A., Obstová, V. & Suk, M. (eds), Geologie Moravy a Slezska: Sborník příspěvků k 90. výročí narození prof. dr. K. Zapletala. Moravské zemské muzeum a Sekce geologických věd Přírodovědecké fakulty Masarykovy univerzity, Brno, pp. 8-99. [In Czech.]
  • 47. Malý, L. & Uhrová, J., 1962. O slepencových souvrstvích v permokarbonu boskovické brázdy v rosicko-oslavanské pánvi. Časopis Moravského muzea, Vědy přírodní, 47: 53-58. [In Czech.]
  • 48. Malý, L. & Uhrová, J., 1980. Příspěvek k paleogeografii karbonu v jižní části boskovické brázdy. Časopis Moravského muzea, Vědy přírodní, 65: 31-42. [In Czech.]
  • 49. Manuella, F. C., Carbone, S. & Barreca, G., 2012. Origin of saponite-rich clays in a fossil serpentinite-hosted hydrothermal system in the crustal basement of the Hyblean Plateau (Sicily, Italy). Clays and Clay Minerals, 60: 18-31.
  • 50. Medaris, L. G., Jr., Jelínek, E., Beard, B. L., Valley, J. W., Spicuzza, M. J. & Strnad, L., 2013. Garnet pyroxenite in the Biskupice peridotite, Bohemian Massif, anatomy of a Variscan high-pressure cumulate. Journal of Geosciences, 58: 3-19.
  • 51. Medaris, L. G., Jr., Wang, H., Jelínek, E., Mihaljevič, M. & Jakeš, P., 2005. Characteristics and origins of diverse Variscan peridotites in the Gföhl Nappe, Bohemian Massif, Czech Republic. Lithos, 82: 1-23.
  • 52. Mellini, M., Rumori, C. & Viti, C., 2005. Hydrothermally reset magmatic spinels in retrograde serpentinites, formation of “ferritchromit” rims and chlorite aureoles. Contributions to Mineralogy and Petrology, 149: 266-275.
  • 53. Méring, J., 1949. L'Intéreference des rayons X dans les systems a' stratification dé sordonnée. Acta Crystallographica, 2: 371-377.
  • 54. Mitsis, I., Godelitsas, A., Göttlicher, J., Steininger, R., Gamaletsos, P. N., Perraki, M., Abad-Ortega, M. M. & Stamatakis, M., 2018. Chromium-bearing clays in altered ophiolitic rocks from Crommyonia (Soussaki) volcanic area, Attica, Greece. Applied Clay Science, 162: 362-374.
  • 55. Moore, D. M. & Reynolds, R. C., 1997. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, New York, 378 pp.
  • 56. Morata, D., Higueras, P., Domínguez-Bella, S., Parras, J., Velasco, F. & Aparicio, P., 2001. Fuchsite and other Cr-rich phyllosilicates in ultramafic enclaves from the Almadén mercury mining district, Spain. Clay Minerals, 36: 345-354.
  • 57. Nehyba, S., Roetzel, R. & Maštera, L., 2012. Provenance analysis of the Permo-Carboniferous fluvial sandstones of the southern part of the Boskovice Basin and the Zöbing Area (Czech Republic, Austria): implications for paleogeographical reconstructions of the post-Variscan collapse basins. Geologica Carpathica, 63: 365-382.
  • 58. Nesbitt, H. W. & Young, G. M., 1984. Prediction of some weathering trends of plutonic and volcanic-rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48: 1523-1534.
  • 59. Odin, G. S., 1982. Interlaboratory standards for dating purposes. In: Odin, G. S. (ed.), Numerical dating in stratigraphy. Wiley and Sons, Chichester, UK, pp. 123-149.
  • 60. Opluštil, S., Jirásek, J., Schmitz, M. & Matýsek, D., 2017. Biotic changes around radioisotopically constrained Carboniferous- Permian boundary in the Boskovice Basin (Czech Republic). Bulletin of Geosciences, 92: 95-122.
  • 61. Opluštil, S., Schmitz, M., Cleal, J. Ch. & Martínek, K., 2016. A review of the Middle-Late Pennsylvanian west European regional substages and floral biozones, and their correlation to the Geological Time Scale based on new U-Pb ages. Earth Science Reviews, 154: 301-335.
  • 62. Oze, C., Fendorf, S., Bird, D. K. & Coleman, R. G., 2004. Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California. American Journal of Science, 204: 67-101.
  • 63. Pešek, J., 2004. Late Paleozoic limnic basins and coal deposits of the Czech Republic. Folia Musei rerum naturalium Bohemiae Occidentalis, Geologica, Suppl. 1, 188 pp.
  • 64. Pešek, J., Holub, V., Jaroš, J., Malý, L., Martínek, K., Prouza, V., Spudil, J. & Tásler, R., 2001. Geologie a ložiska svrch- nopaleozoických limnických pánví České republiky. Český geologický ústav, Praha, 243 pp. [In Czech.]
  • 65. Pollastro, M. R., 1993. Considerations and applications of the illite/smectite geothermometer in hydrocarbon bearing rocks of Miocene to Mississippian age. Clays and Clay Minerals, 41: 119-133.
  • 66. Pouchou, J. L. & Pichoir, F., 1985. “PAP” procedure for improved quantitative microanalysis. Microbeam Analysis, 20: 104-105.
  • 67. Přichystal, A., 1993. Vulkanismus v geologické historii Moravya Slezska od paleozoika do kvartéru. In: Přichystal, A., Obstová, V. & Suk, M. (eds), Geologie Moravy a Slezska: Sborník příspěvků k 90. výročí narození prof. dr. K. Zapletala. Moravské zemské muzeum a Sekce geologických věd Přírodovědecké fakulty Masarykovy univerzity, Brno, pp. 59-70. [In Czech.]
  • 68. Přichystal, A., 1994. Nové výskyty magmatických hornin v permu boskovické brázdy. Geologické výzkumy na Moravě a ve Slezsku v roce 1963(1): 60-62. [In Czech.]
  • 69. Quantin, C., Becquer, T., Rouiller, J. H. & Berthelin, J., 2002. Redistribution of metals in a New Caledonia ferrelsol after microbial weathering. Soil Science Society of America Journal Abbreviation, 66: 1797-1804.
  • 70. Randive, K., Korakoppa, M. M., Muley, S. V., Varade, A. M., 2015. Paragenesis of Cr-rich muscovite and chlorite in green-mica quartzites of Saigaon-Palasgaon area, Western Bastar Craton, India. Journal of Earth Science, 124: 213-225.
  • 71. Rieder, M., Cavazzini, G., D'yakonov, Yu. S., Frank-Kamenetskii, V. A., Gottardi, G., Guggenheim, S., Koval', P. V., Müller, G., Neiva, A. M. R, Radoslovich, E. W., Robert, J.-L., Sassi, F. P., Takeda, H., Weiss, Z. & Wones, D. R., 1998. Nomenclature of the micas. Canadian Mineralogist, 36: 905-912.
  • 72. Rosales, R. M., Faz, A., Gómez-Garrido, M., Munoz, A., Murcia, F. J., González, V. & Acosta, J. A., 2017. Geochemical speciation of chromium related to sediments properties in the riverbed contaminated by tannery effluents. Journal of Soils and Sediments, 17: 1437-1448.
  • 73. Šafanda, J. & Malý, L., 1994. Paleogeothermal gradient in the Boskovice furrow. Studia Geophysica et Geodaetica, 38: 37-45.
  • 74. Šimůnek, Z. & Martínek, K., 2009. Study of Late Carboniferous and Early Permian plant assemblages from the Boskovice Basin, Czech Republic. Review of Palaeobotany and Palynology, 152: 237-269.
  • 75. Środoń, J., Zeelmaekers, E. & Derkowski, A., 2009. The chargé of component layers of illite-smectite in bentonites and the nature of end-member illite. Clays and Clay Minerals, 57: 649-671.
  • 76. Šucha, V., Kraus, I., Gerthofferová, H., Peteš, J. & Sereková, M., 1993. Smectite to illite conversion in bentonites and shales of the East Slovak Basin. Clay Minerals, 28: 243-253.
  • 77. Suess, F. E., 1907. Die Tektonik des Steinkohlengebietes von Rossitz und Ostrand des böhmischen Grundgebirges. Jahrbuch der Kaiserlich-Königlichen Geologischen Reichsanstalt, 57: 793-834.
  • 78. Taylor, T. R., Giles, M. R., Hathon, L. A., Diggs, T. N., Braunsdorf, N. R., Birbiglia, G. V., Kittridge, M. G., Macaulay, C. I. & Espejo, I. S., 2010. Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality. AAPG Bulletin, 94: 1093-1132.
  • 79. Weibel, R., Olivarius, M., Friis, H., Kristensen, L., Hjuler, M. L., Kj0ller, C., Pedersen, P. K., Boyce, A., Mathiesen, A. & Nielsen, L. H., 2017. Climatic influence on early and burial diagenesis in Triassic and Jurassic sandstones from the Norwegian-Danish Basin. The Depositional Record, 3: 60-91.
  • 80. Weiss, J., 1966. Ultrabasic rocks of the West Moravian Crystalline Complex. Krystalinikum, 4: 171-183.
  • 81. Went, D. J., 2005. Pre-vegetation alluvial fan facies and processes: an example from the Cambro-Ordovician Rozel Conglomerate Formation, Jersey, Channel Islands. Sedimentology, 52: 693-713.
  • 82. Whitney, D. L. & Evans, B. W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95: 185-187.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dec66270-b809-40fe-94b7-eb12b52a45e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.