Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study investigates the structure–property relationship in a dissimilar joint between super duplex stainless steel (sDSS 2507) and pipeline steel (X-70) using gas tungsten arc welding and ER2594 filler. Tubing and risers used to transport hydrocarbons are regularly joined using these dissimilar metals. The microstructures of lower heat input (LHI-0.7 kJ/mm) and higher heat input (HHI-1.4 kJ/mm) weldments were examined to understand the influence of heat input on the structure–property relationship. The weldments' mechanical characteristics were tested via hardness, impact, and tensile tests. Base metal and weld zone/interface characterization were studied utilizing optical and scanning electron microscopes with energy-dispersive spectroscopy (EDS). Elemental variation was confirmed by EDS spectra, elemental line mapping, and electron probe microanalysis with wavelength-dispersive spectrometer along the weld interface and weld zone. Significant microstructure variation was observed in X-70 BM at the LHI and HHI weld interfaces. Type II boundary and macro-segregation forms like peninsulas and islands were present in both weldments. In LHI and HHI weldment, duplex microstructure dominates the weld zone cap and filler pass. In the backing pass, duplex microstructure replaces skeletal ferrite, which predominates in the root pass of the HHI weld zone. LHI weldment has an average microhardness of 275 ± 7 HV0.5, while HHI had 285 ± 5 HV0.5. Both weldment’s tensile tests revealed that the sample fractured on the weaker X70 BM side. LHI and HHI weldments had 600 MPa and 610 MPa ultimate tensile strengths and 22% and 18% elongation percentages, respectively. LHI weldments (200 ± 7 J, 210 ± 4 J) and HHI weldments (210 ± 5 J, 220 ± 8 J) have lower average impact toughness in cap and root pass than the sDSS 2507 BM (320 ± 3 J) and X-70 BM (300 ± 6 J), respectively. The increase in heat input led to a minimal 2% difference in tensile strength, a notable 10% increase in hardness, and a slight 5% variation in impact toughness between LHI and HHI weldments. Marine and offshore applications may benefit from investigating the sDSS 2507/X-70 DWJ's process parameter selection, thermodynamic analysis, and structure–property relationship.
Czasopismo
Rocznik
Tom
Strony
art. no. e164, 2024
Opis fizyczny
Bibliogr. 44 poz., rys., wykr.
Twórcy
autor
- Department of Mechanical Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India
autor
- Department of Mechanical Engineering, IIT Delhi, New Delhi, India
autor
- Department of Mechanical Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India
autor
- Department of Mechanical Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India
Bibliografia
- 1. Lippold JC. Welding metallurgy and weldability. Hoboken: Wiley;2014. https://doi.org/10.1002/9781118960332.
- 2. Khan WN, Chhibber R. Experimental investigation on dissimilar weld between super duplex stainless steel 2507 and API X70 pipeline steel. Proc Inst Mech Eng Part L J Mater Des Appl. 2021;235:1827–40. https://doi.org/10.1177/14644207211013056.
- 3. Sadeghian M, Shamanian M, Shafyei A. Effect of heat input on microstructure and mechanical properties of dissimilar joints between super duplex stainless steel and high strength low alloy steel. Mater Des. 2014;60:678–84. https://doi.org/10.1016/j.mat-des.2014.03.057.
- 4. Chhibber R, Arora N, Gupta SR, Dutta BK. Use of bimetallic welds in nuclear reactors: associated problems and structural integrity assessment issues. Proc Inst Mech Eng C J Mech Eng Sci. 2006;220:1121–33. https:// doi. org/ 10. 1243/ 09544 062JMES135.
- 5. Khan WN, Mahajan S, Chhibber R. Investigations on reformed austenite in the microstructure of dissimilar super duplex/pipeline steel weld. Mater Lett. 2021;285: 129109. https://doi.org/10.1016/j.matlet.2020.129109.
- 6. Maurya AK, Pandey C, Chhibber R. Dissimilar welding of duplex stainless steel with Ni alloys: a review. Int J Press Vessels Pip. 2021;192: 104439. https://doi.org/10.1016/j.ijpvp.2021.104439.
- 7. Maurya AK, Bhattacharyya A, Chhibber R, Pandey C. Structural integrity and corrosion behavior assessment of the dissimilar gas tungsten arc welded joint of sDSS 2507/ IN625superalloy. Mater Chem Phys. 2024;318: 129322. https:// doi.org/10.1016/j.matchemphys.2024.129322.
- 8. Eghlimi A, Shamanian M, Eskandarian M, Zabolian A, Nezakat M, Szpunar JA. Evaluation of microstructure and texture across the welded interface of super duplex stainless steel and highstrength low alloy steel. Surf Coat Technol. 2015;264:150–62.https://doi.org/10.1016/j.surfcoat.2014.12.060.
- 9. Khan WN, Chhibber R. Effect of filler metal on solidification, microstructure and mechanical properties of dissimilar super duplex/pipeline steel GTA weld. Mater Sci Eng, A. 2021;803:140476. https://doi.org/10.1016/j.msea.2020.140476.
- 10. Zahraei SM, Dehmolaei R, Ashrafi A. The effect of heat inputon microstructure and HAZ expansion in dissimilar joints between API5L X80/DSS 2205 steels using thermal cycles. Rev Metal. 2022;58: e222. https://doi.org/10.3989/revmetalm.222.
- 11. Wang X, Zhang L, Kuang X, Lu M. Microstructure and galvanic corrosion of dissimilar weldment between duplex stainless steel UNS 31803 and X80 Steel. In: Mei CC editor. Symposium on wave mechanics and hydrodynamics; off shore measurement and data interpretation, volume 6: materials technology. ASMEDC;2009. p. 295–99. https://doi.org/10.1115/OMAE2009-80203.
- 12. Bae SH, Lee HW. Effect of intermetallic precipitation on the properties of multi passed duplex stainless steel weldment. J Korean Inst Met Mater. 2014;52:631–6. https://doi.org/10.3365/KJMM.2014.52.8.631.
- 13. Dak G, Pandey C. A critical review on dissimilar welds joint between martensitic and austenitic steel for power plant application. J Manuf Process. 2020;58:377–406. https://doi.org/10.1016/j.jmapro.2020.08.019.
- 14. Maurya AK, Chhibber R, Pandey C. Studies on residual stresses and structural integrity of the dissimilar gas tungstenarc welded joint of sDSS 2507/Inconel 625 for marine application. J Mater Sci. 2023;58:8597–634. https://doi.org/10.1007/s10853-023-08562-9.
- 15. Pańcikiewicz K, Świerczyńska A, Hućko P, Tumidajewicz M. Laser dissimilar welding of AISI 430F and AISI 304 stainless steels. Materials. 2020;13:4540. https://doi.org/10.3390/ma13204540.
- 16. Varbai B, Pickle T, Májlinger K. Effect of heat input and role of nitrogen on the phase evolution of 2205 duplex stainless steel weldment. Int J Press Vessels Pip. 2019;176: 103952. https://doi.org/10.1016/j.ijpvp.2019.103952.
- 17. Bhanu V, Pandey C, Gupta A. Dissimilar joining of the martensitic grade P91 and Incoloy 800HT alloy for AUSC boiler application: microstructure, mechanical properties and residual stresses. CIRP J Manuf Sci Technol. 2022;38:560–80. https://doi.org/10.1016/j.cirpj.2022.06.009.
- 18 Dak G, Guguloth K, Vidyarthy RS, Fydrych D, Pandey C. Creep rupture study of dissimilar welded joints of P92 and 304L steels. Weld World. 2024. https:// doi. org/ 10. 1007/s40194-024-01757-x.
- 19. Maurya AK, Khan WN, Patnaik A, Pandey SM, Chhibber R, Pandey C. Tribological behavior and residual stresses of gas tung-sten arc welded dissimilar joint of sDSS 2507/X-70 pipeline steel. Metall Mater Trans B. 2024;2024:1–16. https://doi.org/10.1007/S11663-024-03053-X.
- 20. Varbai B, Bolyhos P, Kemény DM, Májlinger K. Microstructure and corrosion properties of austenitic and duplex stainless steel dissimilar joints, periodica polytechnica. Mech Eng.2022;66:344–9. https://doi.org/10.3311/PPme.21007.
- 21. Wang J, Lu M, Zhang L, Chang W, Xu L, Hu L. Effect of welding process on the microstructure and properties of dissimilar weld joints between low alloy steel and duplex stainless steel. Int J Miner Metall Mater. 2012;19:518–24. https://doi.org/10.1007/s12613-012-0589-z.
- 22. Maurya AK, Chhibber R, Pandey C. Heat input effect on dissimilar super duplex stainless steel (UNS S32750) and nitronic steel (N 50) gas tungsten arc weld: mechanism, microstructure, and mechanical properties. J Mater Eng Perform. 2023;32:5283–316.https://doi.org/10.1007/s11665-022-07471-3.
- 23. Maurya AK, Pandey C, Chhibber R. Influence of heat input on weld integrity of weldments of two dissimilar steels. Mater Manuf Processes. 2023;38:379–400. https://doi.org/10.1080/10426914.2022.2075889.
- 24. Mendoza BI, Maldonado ZC, Albiter HA, Robles PE. Dissimilar welding of superduplex stainless steel/HSLA steel for off shore applications joined by GTAW. Engineering. 2010;02:520–8.https://doi.org/10.4236/eng.2010.27069.
- 25. Belkessa B, Miroud D, Cheniti B, Ouali N, Hakem M, Djama M. Dissimilar welding between 2205 duplex stainless steel and APIX52 high strength low alloy steel. Diffus Found. 2018;18:7–13.https://doi.org/10.4028/www.scientific.net/DF.18.7.
- 26. Adin MŞ, Okumuş M. Investigation of microstructural and mechanical properties of dissimilar metal weld between AISI420 and AISI 1018 STEELS. Arab J Sci Eng. 2022;47:8341–50.https://doi.org/10.1007/s13369-021-06243-w.
- 27. Adin MŞ. A parametric study on the mechanical properties of MIG and TIG welded dissimilar steel joints. J Adhes Sci Technol. 2024;38:115–38. https://doi.org/10.1080/01694243.2023.2221391.
- 28. Yousefieh M, Shamanian M, Saatchi A. Influence of heat input inpulsed current GTAW process on microstructure and corrosion resistance of duplex stainless steel welds. J Iron Steel Res Int. 2011;18:65–9. https://doi.org/10.1016/S1006-706X(12)60036-3.
- 29. Maurya AK, Kumar N, Chhibber R, Pandey C. Study on microstructure–mechanical integrity of the dissimilar gas tungstenarc weld joint of sDSS 2507/X-70 steels for marine applications. J Mater Sci. 2023;58:11392–423. https://doi.org/10.1007/s10853-023-08723-w.
- 30. Maurya AK, Chhibber R, Pandey C. GTAW dissimilar weldment of sDSS 2507 and nickel alloy for marine applications: microstructure-mechanical integrity. Metall Mater Trans A. 2023;54:1–30. https://doi.org/10.1007/s11661-023-07101-0.
- 31. E. ASTM, ASTM E-407:Standard practice for microetching metals and alloys, USA: ASTM International. 1997. https://doi.org/10.1520/E0407-07R15E01.2.
- 32. ASTM E92-17, Standard test methods for Vickers hardness and Knoop hardness of metallic materials. West Conshohocken: ASTM International; 2017. p. 1–27. https:// doi. org/ 10. 1520/E0092-17.2.
- 33. ASTM American Society for Testing and Materials, ASTM E23-12c, Standard test methods for notched bar impact testing of metallic materials. ASTM international. 2012. https://doi.org/10.1520/E0023-18.
- 34. ASTM E8, ASTM E8/E8M standard test methods for tension testing of metallic materials 1, Annual Book of ASTM Standards 4 (2010) 1–27. https://doi.org/10.1520/E0008.
- 35. Maurya AK, Pandey C, Chhibber R. Effect of filler metal composition on microstructural and mechanical characterization of dissimilar welded joint of nitronic steel and super duplex stainlesssteel. Arch Civ Mech Eng. 2022;22:1–28. https://doi.org/10.1007/S43452-022-00413-9.
- 36. Maurya AK, Pandey SM, Chhibber R, Pandey C. Structure–property relationships and corrosion behavior of laser-welded X-70/UNS S32750 dissimilar joint. Arch Civ Mech Eng. 2023;23:81.https://doi.org/10.1007/s43452-023-00627-5.
- 37. Joo MS, Suh D-W, Bae JH, Bhadeshia HKDH. Role of delamination and crystallography on anisotropy of Charpy toughness in API-X80 steel. Mater Sci Eng A. 2012;546:314–22. https://doi.org/10.1016/j.msea.2012.03.079.
- 38. Sen WH. Effect of welding variables on cooling rate and pitting corrosion resistance in super duplex stainless weldments. Mater Trans Jpn Inst Met Mater. 2005. https://doi.org/10.2320/matertrans.46.593.
- 39. Muthupandi V, Bala Srinivasan P, Seshadri SK, Sundaresan S. Effect of weld metal chemistry and heat input on the structure and properties of duplex stainless steel welds. Mater Sci Eng A.2003;358:9–16. https://doi.org/10.1016/S0921-5093(03)00077-7.
- 40. Eghlimi A, Shamanian M, Raeissi K. Effect of current type on microstructure and corrosion resistance of super duplex stainless steel claddings produced by the gas tungsten arc welding process. Surf Coat Technol. 2014;244:45–51. https://doi.org/10.1016/J.SURFCOAT.2014.01.047.
- 41. Zhang Z, Jing H, Xu L, Han Y, Zhao L, Lv X, Zhang J. Influence of heat input in electron beam process on microstructure and properties of duplex stainless steel welded interface. Appl Surf Sci. 2018;435:352–66. https://doi.org/10.1016/j.apsusc.2017.11.125.
- 42 Gunn R. Duplex stainless steels microstructure, properties and applications. Anti Corros Methods Mater. 1998. https://doi.org/10.1108/acmm.1998.12845bae.001.
- 43. Saedi AH, Hajjari E, Sadrossadat SM. Microstructural characterization and mechanical properties of TIG-Welded API 5L X60HSLA steel and AISI 310S stainless steel dissimilar joints. Metall Mater Trans A Phys Metall Mater Sci. 2018;49:5497–508. https://doi.org/10.1007/S11661-018-4890-Y.
- 44. Yang H, Chen J, Huda N, Gerlich AP. Effect of beam wobbling on microstructure and hardness during laser welding of X70 pipeline steel. Sci Technol Weld Join. 2022;27:326–38. https://doi.org/10.1080/13621718.2022.2053395.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dec64870-05d3-4c64-86c2-6d0acfd03050
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.