PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic performance improvement of small scale synchronous generator adjacent to electric arc furnace load

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electric arc furnace has a variable power consumption with time that causes mechanical oscillations in the adjacent small scale synchronous generators, and consequently, decreases its life. In this paper, we first provide a model for electric arc furnace and is validated using actual measured data. In this paper a real distribution system consisting of the small scale synchronous generator, which feeds industrial loads, including electric arc furnaces, is analyzed and evaluated based on the simulation of the time domain. Using analytical studies and simulation results, the appropriate value for controller parameters of the prime mover is determined in such a way that the mechanical oscillations of the small scale synchronous generator created by the electric arc furnace are reduced. In addition, the response of the transient mode of the small scale synchronous generator is also considered in the proper setting of the parameters. Finally reliability and effectiveness of the proposed parameters are evaluated using real measurement data.
Rocznik
Strony
218--229
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
  • Faculty of Electrical Engineering, Tafresh University, Tafresh, Iran
  • Faculty of Electrical Engineering, Tafresh University, Tafresh, Iran
Bibliografia
  • 1. Zheng, T., Makram, E.B., "An adaptive arc furnace model", IEEE Trans. Power Del., Vol. 15, No. 3, pp. 931- 939, 2000.
  • 2. Gercek, C.O., Ermis, M., Ertas, A., et al., Design, implementation, and operation of a new C-type 2nd harmonic filter for electric arc and ladle furnaces", IEEE Trans. Ind. Appl., Vol. 47, No. 4, pp. 1545-1557, 2011.
  • 3. Chang, G.W., Shih, M.F., Chen, Y.Y. and Liang, Y.J., "A hybrid wavelet transform and neural-network-based approach for modelling dynamic voltage-current characteristics of electric arc furnace", IEEE Trans. Power Del., Vol. 29, No. 2, pp. 815-824, 2014.
  • 4. Surgevil, T., Akpnar, E., "Effects of electric arc furnace loads on synchronous generators and asynchronous motors", Int. Conf. Electrical and Electronics Engineering (ELECO), Bursa, pp. 49-53, 2009.
  • 5. Tsao, T.P., Tsai, J.I., "Torsional interactions between an electrical arc furnace load and a turbine-generator set", Conf. Electrical Utility Deregulation, Hong Kong, pp. 627-632, 2004.
  • 6. Lin, W.M., Tsai, C.C., Lin, C.H., et al., "Alleviating shaft torsional vibrations caused by electric arc furnaces for a low-capacity turbine generator by using a flywheel coupler", Int. Conf. Industrial Engineering and Engineering Management, Macao. pp. 1771-1775, 2010.
  • 7. Morello, S., Dionise, T.J. and Mank, T.L., "Comprehensive analysis to specify a static var compensator for an Electric Arc Furnace upgrade", IEEE Trans. Industry Applications, Vol. 51, No. 6, pp. 4840- 4852, 2015.
  • 8. Morati, M., Girod, D., et al."Industrial 100-MVA EAF Voltage Flicker Mitigation Using VSC-Based STATCOM With Improved Performance", IEEE Trans. Power Del., Vol. 31, No. 6, pp. 2494-2501, 2016.
  • 9. Pires, I. A., Cardoso, M. M. G., and Cardoso Filho, B. J., "An Active Series Reactor for an Electric Arc Furnace: A Flexible Alternative for Power-Flow Control", IEEE Industry Applications Mag., Vol. 22, No. 5, pp.53-62, 2016.
  • 10. Shaghayegh Kazemlou, "Advanced Control of Small-Scale Power Systems with Penetration of Renewable Energy Sources", LSU Doctoral Dissertations. 2398. https://digitalcommons.lsu.edu/gradschool_dissertations/2398, 2014.
  • 11. Baldwin, M.W., "Electric arc furnace impact on generator torque", Conf.Power system and Exposition, pp.776-780, 2004.
  • 12. Golkar, M.A., Tavakoli Bina, M., Meschi, S., "A novel method of electrical arc furnace modeling for flicker study", Renewable Energies and Power Quality, 2007, Vol. 126, pp. 620-626, 2007.
  • 13. Montanari, G.C., Loggini, M., Cavallini, et al., "Arc furnace model for the study of flicker compensation in electrical networks", IEEE Trans. Power Del., 1994, Vol.9, No. 4, pp. 2026-2036, 1994.
  • 14. Puttgen, H.B., MacGregor, P.R., Lambert, F.C., "Distributed generation: semantic hype or the dawn of a new era?", IEEE Power and Energy Mag., 2003, Vol. 1, No. 1, pp. 22-29, 2003.
  • 15. Paquette, A.D., Reno, M.J., Harley, R.G., et al., "Transient load sharing between inverters and synchronous generators in islanded microgrids", Conf. Energy Conversion Congress and Exposition (ECCE), Raleigh, pp. 2735-2742, 2012.
  • 16. Theubou, T., Wamkeue, R., Kamwa, I., "Dynamic model of diesel generator set for hybrid wind-diesel small grids applications", Int. Conf. Electrical & Computer Engineering (CCECE), Montreal, pp.1-4, 2012.
  • 17. Vargas-Martínez, A., Minchala Avila, L.I., Zhang, Y., et al., "Hybrid adaptive fault-tolerant control algorithms for voltage and frequency regulation of an islanded microgrid", Int. Trans. Electrical Energy Systems, Vol. 25, No. 5, pp. 827-844, 2014.
  • 18. Ebrahim Rokroka , Miadreza Shafie-khaha , João P. S. Catalão, "Review of Primary Voltage and Frequency Control Methods for Inverter-Based Islanded Microgrids with Distributed Generation", 2013.
  • 19. Mehrizi-Sani, A., Iravani, R., "Potential-function based control of a microgrid in islanded and grid-connected modes", IEEE Trans. Power Systems, Vol. 25, No. 4, pp. 1883-1891, 2010.
  • 20. Sharaf, A.M., Abdin, E.S., "A digital simulation model for wind-diesel conversion scheme". Twenty-First Southeastern Symposium on System Theory, Tallahassee, pp. 160-166, 1989.
  • 21. Roy, S., Malik, O.P., Hope, G.S., "A k-step predictive scheme for speed control of diesel driven power plants", IEEE Trans. Industry Applications, Vol. 29, No. 2, pp. 389–396, 1993.
  • 22. IEEE Std 421.5-2005: "'IEEE Recommended Practice for Excitation System Models for Power System Stability Studies", 2006.
  • 23. Hu, J., Zhu, J., G. Dorrell, D., "Model predictive control of inverters for both islanded and grid-connected operations in renewable power generations", IET Renew. Power Gener., Vol. 8, No. 3, pp. 240-248, 2013.
  • 24. Syed, M.H., Zeineldin, H.H., El Moursi, M.S., "Hybrid micro-grid operation characterization based on stability and adherence to grid codes", IET Gener. Transm. Distrib, Vol. 8, No. 3, pp. 563-572, 2014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dec5d86e-4464-4c5b-b4e9-d9da9040da6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.