Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Although the complexities and irrevocable consequences associated with bridge scour have attracted researchers interest, their studies scarcely indicated the effect of a bridge pier proximity to an abutment. This research aims to measure maximum scour depth and exhibit the impact of pier-abutment scour interference based on laboratory experiments where vertical-wall abutment and two shapes of a pier (oblong and lenticular) were used at three different spacings (23.5, 16.0, 9.0 cm). The results showed an obvious increase in the scour depth ratio when increasing flow intensity, Froude number, and a decreasing flow depth. They also showed that reduced pier-abutment spacing was accompanied by increase in pier scour for both shapes while decrease in abutment scour. The maximum scour depth that caused by an oblong shape was more than a lenticular shape by about 10.8%. Furthermore, new empirical equations were derived using IBM SPSS Statistics 21 with determination coefficients of 0.969, 0.974, and 0.978 for oblong, lenticular and abutment, respectively. They showed the correlation between predicted and observed data.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
240--250
Opis fizyczny
Bibliogr. 29 poz., fot. rys., tab., wykr.
Twórcy
autor
- University of Basrah, College of Engineering, Department of Civil Engineering, Center of Basrah, PO Box 49, Al Basrah, Iraq
autor
- University of Basrah, College of Engineering, Department of Civil Engineering, Center of Basrah, PO Box 49, Al Basrah, Iraq
Bibliografia
- ABOZEID G., MOHAMED H.I., ALI S.M. 2007. 3-D numerical simulation of flow and clear water scour by interaction between bridge piers. Journal of Engineering Sciences. Assiut University. Vol. 35(4) p. 891–907. DOI 10.21608/JESAUN.2007.114322.
- AL-KHATEEB H.M., AL-THAMIRY H.A., HASSAN H.H. 2016. Evaluation of local scour development around curved non-submerged impermeable groynes. International Journal of Scientific and Technology Research. Vol. 5(1) p. 83–89.
- ALABI P.D. 2006. Time development of local scour at bridge pier fitted with a collar. MSc. Thesis. Department of Civil and Geological Engineering. Saskatchewan, Canada. University of Saskatchewan pp. 192.
- ANSARI S.A., KOTHYARI U.C., RANGA RAJU K.G. 2002. Influence of cohesion on scour around bridges piers. Journal of Hydraulic Research. Vol. 40(6) p. 717–729. DOI 10.1080/00221680209499918.
- ARNESON L.A., ZEVENBERGEN L.W., LAGASSE P.F., CLOPPER P.E. 2012. Evaluating scour at bridges [online]. 5th ed. Hydraulic Engineering Circular. No. 18. FHWA-HIF-12-003. Washington, D.C. FHWA. [Access 23.07.2021]. Available at: https://www.fhwa.dot.gov/engineering/hydraulics/pubs/hif12003.pdf
- BARBHUIYA A.K., DEY S. 2004. Local scour at abutment: A review. National Institute of Technology. Sadhana. Vol. 29(5) p. 15–26. DOI 10.1007/BF02703255.
- CHANG W., LAI J., YEN C. 2004. Evolution of scour depth at circular bridge piers. Journal of Hydraulic Engineering. Vol. 130 (9) p. 905–913. DOI 10.1061/(ASCE)0733-9429(2004)130:9(905).
- CHEREMISINOFF N.P., CHENG S.L. 1987. Hydraulic mechanics. Ser. Civil Engineering Practice Vol. 2. Lancaster, PA, USA. Techonomic Publishing Company. ISBN 978-0877625469 pp. 780.
- CHIEW Y.M. 1995. Mechanics of riprap failure at bridge piers. Journal of Hydraulic Engineering. Vol. 121(9) p. 635–643. DOI 10.1061/(ASCE)0733-9429(1995)121:9(635).
- CHIEW Y.M., MELVILLE B.W. 1987. Local scour around bridge piers. Journal of Hydraulic Research. Vol. 25(1) p. 15–26. DOI 10.1080/00221688709499285.
- ELAWADY E., MICHIUE M., HINOKIDANI O. 2001. Movable bed scour around submerged spur-dikes. Annual Journal of Hydraulics Engineering. Vol. 45 p. 373–378. DOI 10.2208/prohe.45.373.
- JAIN S.C., FISCHER E.E. 1979. Scour around circular bridge piers at high Froude numbers. Rep. No. FHWA-RD-79-104. Washington, D.C. FHWA pp. 70.
- KHWAIRAKPAM P., RAY S.S., DAS S., DAS R., MAZUMDAR A. 2012. Scour hole characteristics around a vertical pier under clear water scour conditions. ARPN Journal of Engineering and Applied Sciences. Vol. 7(6) p. 649–654.
- KWAN T.F.R., MELVILLE B.W. 1994. Local scour and flow measurements at bridge abutments. Journal of Hydraulic Research. Vol. 32(5) p. 661–673. DOI 10.1080/00221689409498707.
- LAURSEN E.M. 1958. Scour at bridge crossings. Bulletin. No. 8. Iowa Highway Research Board. Ames. Iowa. U.S.A. pp. 53.
- MAATOOQ J.S. 2008. Interference of scouring action between pier and abutment: Primary approach. Engineering and Technology Journal. Vol. 26(5) p. 565–569.
- MASJEDI A., SHAFAEI BEJESTAN M., ESFANDI A. 2010. Experimental study on local scour around single oblong pier fitted with a collar in a 180 degree flume bend. International Journal of Sediment Research. Vol. 25(3) p. 304–312. DOI 10.1016/S1001-6279(10)60047-9.
- MELVILLE B.W., COLEMAN S.E. 2000. Bridge scour. Water Resources Publications. LLC. Colorado. U.S.A. ISBN 1-887201-18-1 pp. 550.
- MELVILLE B.W., SUTHERLAND A.J. 1988. Design method for local scour at bridge piers. Journal of Hydraulic Engineering. Vol. 1149(10) p. 1210–1226. DOI 10.1061/(ASCE)0733-9429(1988)114:10(1210).
- MEMAR S., DALIR A.H., ARVNAGHI H. 2016. An experimental study on impact of bridge pier on depth of scour hole in abutment. Water and Soil Science. Faculty of Agriculture University of Tabriz. Vol. 26(1–2) p. 59–68.
- MEYERING H. 2012. Effect of sediment density in bridge pier scour experiments. PhD Thesis. University of Braunschweig – Institute of Technology and the Faculty of Engineering. University of Florence. DOI 10.24355/dbbs.084-201206121105-0.
- MUZZAMMIL M., GANGADHARAIAH T., GUPTA A.K. 2004. An experimental investigation of a horseshoe vortex induced by a bridge pier. In: Proceeding of the Institution of Civil Engineers – Water Management. Vol. 157(2) p. 109–119. DOI 10.1680/wama.2004.157.2.109.
- NYARKO K.O., ETTEMA R. 2011. Pier and abutment scour interaction. Journal of Hydraulic Engineering. Vol. 137(12) p. 1598–1605. DOI 10.1061/(ASCE)HY.1943-7900.0000446.
- RAIKAR R.V., DEY S. 2008. Kinematics of horseshoe vortex developing in an evolving scour hole at a square cylinder. Journal of Hydraulic Research. Vol. 46(2) p. 247–264. DOI 10.1080/00221686.2008.9521859.
- RICHARDSON E.V., DAVIS S.R. 2001. Evaluating scour at bridges [online]. 4 th ed. Federal Highway Administration Hydraulic Engineering Circular. No. 18. FHWA NH101-001. Washington, D.C. [Access 25.07.2021]. Available at: https://www.engr.colostate.edu/CIVE510/Manuals/HEC-18%204th%20Ed.(2001)%20-%20Evalu-ating%20Scour%20at%20Bridges.pdf
- SHEPHERD R., FROST J.D. 1995. Failures in civil engineering: structural, foundation and geoenvironmental case studies. Reston, VA. ASCE. ISBN 0784401225 pp. 92.
- SHEN H.W., SCHNEIDER V.R., KARAKI S. 1969. Local scour around bridge piers. Journal of Hydraulic Engineering. Vol. 95(6) p. 1919–1941. DOI 10.1061/JYCEAJ.0002197.
- XIONG W., TANG P., KONG B., CAI C.S. 2016. Reliable bridge scour simulation using Eulerian two-phase flow theory. Journal of Computing in Civil Engineering. ASCE. Vol. 30(5) p. 1–11. DOI 10.1061/(ASCE)CP.1943-5487.0000570.
- ZHANG H., NAKAGAWA H. 2008. Scour around spur dyke. Advanced and future researches [online]. Annual Report of Disaster Prevention Research Institute, Kyoto University. No. 51B p. 633–652. [Access 20.07.2021]. Available at: http://www.civil.kumamoto-u.ac.jp/river/pdf/R-2008a51b0p64.pdf
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dec2575e-c3a4-4d0d-904e-82f96a8aa80a