PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Revealed Comparative Advantage Method for Solving Multicriteria Decision-making Problems

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study proposes and analyzes a new method for the post-Pareto analysis of multicriteria decision-making (MCDM) problems: the revealed comparative advantage (RCA) assessment method. An interesting feature of the suggested method is that it uses the solution to a special eigenvalue problem and can be considered an analog/modification in the MCDM context of well-known ranking methods including the authority-hub method, PageRank method, and so on, which have been successfully applied to such fields as economics, bibliometrics, web search design, and so on. For illustrative purposes, this study discusses a particular MCDM problem to demonstrate the practicality of the method. The theoretical considerations and conducted calculations reveal that the RCA assessment method is self-consistent and easily implementable. Moreover, comparisons with well-known tools of an MCDM analysis shows that the results obtained using this method are appropriate and competitive. An important particularity of the RCA assessment method is that it can be useful for decision-makers in the case in which no decision-making authority is available or when the relative importance of various criteria has not been preliminarily evaluated.
Rocznik
Strony
85--96
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Georgian Technical University, 77, Kostava Str., 0160, Tbilisi, Georgia
Bibliografia
  • [1] Aguirre, O. and Taboada, H. A clustering method based on dynamic self-organizing trees for post-pareto optimality analysis. Procedia Computer Science, 6, 2011,195-200.
  • [2] Balassa, B. Trade liberalisation and “revealed” comparative advantage, The Manchester school, 33, 1965, 99–123.
  • [3] Balf, F. R. Ranking Efficient Units by Regular Polygon Area (RPA) in DEA, International Journal of Industrial Mathematics, 3(1), 2011, 41-53.
  • [4] Bana E Costa C.A., and Vansnick J.C. The MACBETH Approach: Basic Ideas, Software, and an Application. In: Meskens N., Roubens M. (eds) Advances in Decision Analysis. Mathematical Modelling: Theory and Applications, vol 4, 1999, Springer, Dordrecht.
  • [5] Bollen, J., Rodriquez, M.A., and Van de Sompel, H. Journal status. Scientometrics, 69, 2006, 669-687.
  • [6] Brans, J. L’ingenierie de la decision; Elaboration d’instruments d’aide a la decision. La methode PROMETHEE, in L’aide a la decision: Nature, Instruments et Perspectives d’Avenir, R. Nadeau and M. Landry, Eds. Quebec, Canada: Presses de l’Universite Laval, 1982, pp. 183–213.
  • [7] Brauers, W. K. M., Zavadskas, E. K. The MOORA method and its application to privatization in a transition economy. Control and Cybernetics, 35(2), 2006, 445.
  • [8] Carrillo VM, Taboada H.. A post-Pareto approach for multi-objective decision making using a non-uniform weight generator method. Procedia Computer Science. 12:1, 2012,16-121.
  • [9] Carrillo VM, Taboada H. A sweeping cones technique for post pareto analysis. In Industrial and Systems Engineering Research Conference, 2013.
  • [10] Carrillo VM, Taboada H., A General Iterative Procedure of the Non-Numerical Ranking Preferences Method for Multiple Objective Decision Making. Procedia Computer Science. Procedia Computer Science. 12, 2012,135-139.
  • [11] Carrillo, V.M. Post-Pareto optimality methods for the analysis of large Pareto sets in multi-objective optimization, 2013.
  • [12] Carrillo, V.M., Aguirre, O. and Taboada, H. Applications and performance of the nonnumerical ranking preferences method for post-Pareto optimality. Procedia Computer Science, 6, ., 2011, 243-248.
  • [13] Chatterjee, P., Athawale, V.M., and Chakraborty, S. Selection of materials using compromise ranking and outranking methods. Materials & Design, 30, (2009), 4043–4053.
  • [14] Churchman, C.W., Ackoff, R.L., Arnoff, E.L. Introduction to Operations Research, A John Wiley and Sons, Ltd., Publication., New York 1957.
  • [15] Farag, M.M. Quantitative methods of materials selection, In: Kutz M. (Eds) Handbook of Materials Selection, John Wiley & Sons. 2002.
  • [16] Gleich, D.F. PageRank beyond the Web. SIAM Review, 57, 2015, 321-363.
  • [17] Hidalgo, C.A. and Hausmann, R. The building blocks of economic complexity. Proceedings of the National Academy of Sciences, 106, 2009, 10570–10575.
  • [18] Hwang, C.-L., Lai Y.-J., and Liu, T.-Y.. A new approach for multiple objective decision making, Comput. Oper. Res., vol. 20, no. 9,, 1993, 889–899.
  • [19] Inoua, S. A simple measure of economic complexity. arXiv preprint,2016, arXiv:1601.05012.
  • [20] Jahan, A., Mustapha, F., Ismail, M.Y., Sapuan, S.M., and Bahraminasab, M. A comprehensive VIKOR method for material selection. Materials & Design, 32, (2011), 1215–1221.
  • [21] Jones, D., Tamiz, M. A review of goal programming. In Multiple criteria decision analysis, 2016, 903-926.
  • [22] Kacen, I., Hammadi, S., Borne, P. Pareto- optimality Approach on Uniform Design and Fuzzy Evolutionary algorithms for Flexible Job-shop Scheduling. Problems. Systems, Man and Cybernetics, 2002 IEEE International Conference, 2003.
  • [23] Karande, P. and Chakraborty, S. Application of multi-objective optimization on the basis of ratio analysis (MOORA) method for materials selection. Materials & Design, 37, (2012), 317–324.
  • [24] Khabbaz, R., Sarfaraz, B., Dehghan Manshadi, A., Abedian, R. Mahmudi. A simplified fuzzy logic approach for materials selection in mechanical engineering design. Materials & Design, 30, (2009), 687–697.
  • [25] Kleinberg, J.M. Authoritative sources in a hyperlinked environment. Journal of the ACM (JACM), 46, (1999), 604–632.
  • [26] Korhonen, H. Restricting weights in value efficiency Analysis, European Journal of Operation Research,126, 2000, 175-188.
  • [27] Langville, A.N., Meyer, C.D. Deeper inside page rank. Internet Mathematics, 1, 2004, 335-380.
  • [28] Marler, R.T. and Arora, J.S. Function-transformation methods for multi-objective optimization. Engineering Optimization, 37, 2005, 551–570.
  • [29] Mietinen,K. Nonlinear Multi-objective Optimization. Boston: Kluer Academic Publishers, 1999.
  • [30] Opricovic S., Tzeng, G., Extended VIKOR method in comparison with outranking methods, European Journal of Operational Research, vol. 178, no. 2,, 2007, 514–529.
  • [31] Padhye, N., Kalia, S. and Deb, K. Multi-Objective Optimization and Multi-criteria Decision Making For FDM Using Evolutionary Approaches, 2009.
  • [32] Roy, B., Classement et choix en pr´esence de points de vue multiples (la m´ethode ELECTRE). Revue Francaise d’Informatique et de Recherche Op´erationnelle 8, 1968, 57–75.
  • [33] Saaty, T. L. How to make a decision : the analytic hierarchy process, European journal of operational research, vol. 48, 1,, 1990, 9–26.
  • [34] Saaty, T. L., Decision making with dependence and feedback : The analytic network process, RWS publications Pittsburgh. 1996.
  • [35] Salukvadze, M. E.: Optimization of vector functionals. Part I: Programming of optimal trajectories (in Russian). Avtomatika i Telemekhanika, 8, 1971, 5-15.
  • [36] Taboada, H. & Coit, D., Data Mining Techniques to Facilitate the Analysis of the Pareto-Optimal Set for Multiple Objective Problems. In Proceedings of the Industrial Engineering Research Conference (IERC), Orlando, Florida, 2006.
  • [37] Taboada, H. and Coit, D. Post-Pareto Optimality Analysis to Efficiently Identify Promising Solutions for Multi-Objective Problems, Rutgers University ISE Working Paper 05-15, 2005.
  • [38] Triantaphyllou, E., Multi-criteria decision-making methods, in Multicriteria decision making methods: A comparative study. Dordrecht, The Netherlands: Kluwer Academic Publishers (now Springer)., 2000, pp. 5–21.
  • [39] Venkat, V., Jacobson, S., Stori, J. 2004. A Post-Optimality Analysis Algorithm for Multi-Objective Optimization. Computational Optimization and Applications. 28, 357-372.
  • [40] Yu P.L., Leitmann G. Compromise solutions, domination structures, and Salukvadze’s solution. Journal of Optimization Theory and Applications, 13(3), 1974,362-378.
  • [41] Zadeh, L., Optimality and non-scalar-valued performance criteria, IEEE Transactions on Automatic Control, vol. 8, no. 1, pp. 59–60, 1963.
  • [42] Zeleny, M., Multiple criteria decision making. New York: McGraw-Hill, 1982.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dec1a859-25d4-498e-bdc0-8e660de6d14f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.