PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Acoustic Attenuation Performance Analysis and Optimisation of Expansion Chamber Coupled Micro-perforated Cylindrical Panel Using Response Surface Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes the boundary element method (BEM) and the experimental and optimisation studies conducted to understand the potential of expansion chamber coupled micro-perforated cylindrical panel (MPCP) in enhancing the acoustic attenuation for in-duct noise control issues. Owing to the complex structure of the MPCP and to achieve the correct prediction of acoustic attenuation, BEM is adopted on the basis of the Simcenter 3D software to compute the sound transmission loss (TL), As the MPCP is cylindrical in shape with numbers of sub-milimeter holes, additive manufacturing-based 3D printing is utilised for the model prototyping to reduce current design limitation and enable fast fabrication. The TL measurement-based two-load method is adopted for model validation. Subsequently, parametric studies of the MPCP concerning the perforation hole diameter, perforation ratio and depth of air space are carried out to investigate the acoustic performance. Optimisation via response surface method is used as it allows for evaluating the effects of multiple parameters as required in this study. The model validation result shows that the error between the BEM and the measured values is relatively small and shows good agreement. The R-square value is 0.89. The finding from the parametric studies shows that a wider peak attenuation can be achieved by reducing the perforation hole diameter, and one way to increase the TL amplitude is by increasing the air cavity depth. Finally, the optimised MPCP model is adopted to the commercial vacuum cleaner for verification. The sound pressure level of the vacuum cleaner is significantly attenuated within the objective frequency of 1.7 kHz.
Rocznik
Strony
507--517
Opis fizyczny
Bibliogr. 29 poz., fot., rys., tab., wykr.
Twórcy
  • The Vibration Lab, School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
autor
  • The Vibration Lab, School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
  • The Vibration Lab, School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
  • Dyson Manufacturing, 81400 Senai, Johor, Malaysia
autor
  • Dyson Manufacturing, 81400 Senai, Johor, Malaysia
Bibliografia
  • 1. Andersen K. S. (2008), Analyzing muffler performance using the transfer matrix method, Comsol Conference, https://www.comsol.com/paper/analyzing-muffler-performance-using-the-transfer-matrix-method-5079.
  • 2. Aziz M. S. A., Abdullah M. Z., Khor C. Y., Azid I. A. (2015), Optimization of pin through hole connector in thermal fluid-structure interaction analysis of wave soldering process using response surface methodology, Simulation Modelling Practice and Theory, 57: 45-57, doi: 10.1016/j.simpat.2015.06.001.
  • 3. Citarella R., Landi M. (2011), Acoustic analysis of an exhaust manifold by Indirect Boundary Element Method, The Open Mechanical Engineering Journal, 5: 138-151, doi: 10.2174/1874155X01105010138.
  • 4. Delany M. E., Bazley E. N. (1970), Acoustical properties of fibrous absorbent materials, Applied Acoustics, 3 (2): 105-116, doi: 10.1016/0003-682X(70)90031-9.
  • 5. Fu J., Chen W., Tang Y., Yuan W., Li G., Li Y. (2015), Modification of exhaust muffler of a diesel engine based on finite element method acoustic analysis, Advances in Mechanical Engineering, 7 (4): 1687814015575954, doi: 10.1177/1687814015575954.
  • 6. Gaeta R. J., Ahuja K. K. (2016), Effect of orifice shape on acoustic impedance, International Journal of Aeroacoustics, 15 (4-5): 474-495, doi: 10.1177/1475472X16642133.
  • 7. Ganguli R. (2002), Optimum design of a helicopter rotor for low vibration using aeroelastic analysis and response surface methods, Journal of Sound and Vibration, 258 (2): 327-344, doi: 10.1006/jsvi.2002.5179.
  • 8. Ishak M. H. H., Ismail F., Aziz M. S. A., Abdullah M. Z., Abas A. (2019), Optimization of 3D IC stacking chip on molded encapsulation process: a response surface methodology approach, The International Journal of Advanced Manufacturing Technology, 103 (1-4): 1139-1153, doi: 10.1007/s00170-019-03525-4.
  • 9. Ji Z. L., Selamet A. (2000), Boundary element analysis of three-pass perforated duct mufflers, Noise Control Engineering Journal, 48 (5): 151-156, doi: 10.3397/1.2827962.
  • 10. Kallias A. N., Imran Rafiq M. (2013), Performance assessment of corroding RC beams using response surface methodology, Engineering Structures, 49: 671-685, doi: 10.1016/j.engstruct.2012.11.015.
  • 11. Leong W. C., Abdullah M. Z., Khor C. Y. (2013), Optimization of flexible printed circuit board electronics in the flow environment using response surface methodology, Microelectronics Reliability, 53 (12): 1996-2004, doi: 10.1016/j.microrel.2013.06.008.
  • 12. Li Z., Liang X. (2007), Vibro-acoustic analysis and optimization of damping structure with Response Surface Method, Materials & Design, 28 (7): 1999-2007, doi: 10.1016/j.matdes.2006.07.006.
  • 13. Liu Z., Zhan J., Fard M., Davy J. L. (2017), Acoustic properties of multilayer sound absorbers with a 3D printed micro-perforated panel, Applied Acoustics, 121: 25-32, doi: 10.1016/j.apacoust.2017.01.032.
  • 14. Lu C., Chen W., Liu Z., Du S., Zhu Y. (2019), Pilot study on compact wideband micro-perforated muffler with a serial-parallel coupling mode, Applied Acoustics, 148: 141-150, doi: 10.1016/j.apacoust.2018.12.001.
  • 15. Maa D. Y. (1975), Theory and design of microperforated panel sound-absorbing constructions, Scientia Sinica, 18 (1): 55-71, doi: 10.1360/ya1975-18-1-55.
  • 16. Munjal M. L. (1987), Acoustics of Ducts and Mufflers with Application to Exhaust and Ventilation System Design, John Wiley & Sons.
  • 17. Na Y., Lancaster J., Casali J., Cho G. (2007), Sound absorption coefficients of micro-fiber fabrics by reverberation room method, Textile Research Journal, 77 (5): 330-335, doi: 10.1177/0040517507078743.
  • 18. Qian Y. J., Kong D. Y., Liu S. M., Sun S. M., Zhao Z. (2013), Investigation on micro-perforated panel absorber with ultra-micro perforations, Applied Acoustics, 74 (7): 931-935, doi: 10.1016/j.apacoust.2013.01.009.
  • 19. Qin X., Wang Y., Lu C., Huang S., Zheng H., Shen C. (2016), Structural acoustics analysis and optimization of an enclosed box-damped structure based on response surface methodology, Materials & Design, 103: 236-243, doi: 10.1016/j.matdes.2016.04.063.
  • 20. C S. W. et al. (2019), Improvement of the sound absorption of flexible micro-perforated panels by local resonances, Mechanical Systems and Signal Processing, 117: 138-156, doi: 10.1016/j.ymssp.2018.07.046.
  • 21. Selamet A., Ji Z. L. (1999), Acoustic attenuation performance of circular expansion chambers with extended inlet/outlet, Journal of Sound and Vibration, 223 (2): 197-212, doi: 10.1006/jsvi.1998.2138.
  • 22. Selamet A., Ji Z. L., Radavich P. M. (1998), Acoustic attenuation performance of circular expansion chambers with offset inlet/outlet: II. Comparison with experimental and computational studies, Journal of Sound and Vibration, 213 (4): 619-641, doi: 10.1006/jsvi.1998.1515.
  • 23. Tan W.-H., Ripin Z. M. (2013), Analysis of exhaust muffler with micro-perforated panel, Journal of Vibroengineering, 15 (2): 558-573.
  • 24. Tan W.-H., Ripin Z. M. (2016), Optimization of double-layered micro-perforated panels with vibroacoustic effect, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38 (3): 745-760, doi: 10.1007/s40430-014-0274-4.
  • 25. Vasile O. (2010), Transmission loss assessment for a muffler by boundary element method approach, Analele Universităţii “Eftimie Murgu”, 17 (1): 233-242, http://anale-ing.uem.ro/2010/26_C.pdf.
  • 26. Wang Y., Qin X., Huang S., Lu L., Zhang Q., Feng J. (2017), Structural-borne acoustics analysis and multi-objective optimization by using panel acoustic participation and response surface methodology, Applied Acoustics, 116: 139-151, doi: 10.1016/j.apacoust.2016.09.013.
  • 27. Wu M. Q. (1997), Micro-perforated panels for duct silencing, Noise Control Engineering Journal, 45 (2): 69-77.
  • 28. Yuksel E., Kamci G., Basdogan I. (2012), Vibroacoustic design optimization study to improve the sound pressure level inside the passenger cabin, Journal of Vibration and Acoustics, 134 (6): 061017-1-061017-9, doi: 10.1115/1.4007678.
  • 29. Zhenlin J., Qiang M., Zhihua Z. (1994), Application of the boundary element method to predicting acoustic performance of expansion chamber mufflers with mean flow, Journal of Sound and Vibration, 173 (1): 57-71, doi: 10.1006/jsvi.1994.1217.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-debfac2b-a3b2-452a-932f-0758126b596b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.