Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In order to improve the safety properties of molecular perovskite energetic materials, ammonium perchlorate-based molecular perovskite ((H2DABCO)[NH4(ClO4)3], DAP)/graphene composite was prepared and characterized. Molecular perovskite DAP was prepared via a molecular assembly strategy by the facile one-pot reaction of triethylenediamine (TEDA, DABCO), perchloric acid, and ammonium perchlorate, and the DAP/graphene composite was fabricated by mechanical mixing with 10 wt.% graphene. The results demonstrated that impact sensitivity (>120 cm), friction sensitivity (25%) and electrostatic spark sensitivity (7.04 J) of the DAP/graphene composite was less sensitive than raw DAP (impact, friction and electrostatic spark sensitivity: 112.3 cm, 45%, and 5.39 J, respectively), due to the composite desensitization mechanism of graphene. This work may offer new ideas for the design and fabrication of insensitive molecular perovskite-based energetic composites.
Rocznik
Tom
Strony
451--469
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- School of Environment and Safety Engineering, North University of China, China
autor
- School of Environment and Safety Engineering, North University of China, China
autor
- School of Environment and Safety Engineering, North University of China, China
autor
- School of Environment and Safety Engineering, North University of China, China
autor
- Institute of Occupational Health of Ordnance Industry, China
autor
- School of Environment and Safety Engineering, North University of China, China
autor
- School of Environment and Safety Engineering, North University of China, China
Bibliografia
- [1] Chen, S.; Shang, Y.; He, C.; Sun, L.; Ye, Z.; Zhang, W.; Chen, X. Optimizing the Oxygen Balance by Changing the A-site Cations in Molecular Perovskite Highenergetic Materials. CrystEngComm 2018, 20(46): 7458-7463.
- [2] Zhou, J.; Ding, L.; Zhao, F.; Wang, B.; Zhang, J. Thermal Studies of Novel Molecular Perovskite Energetic Material (C6H14N2)[NH4(ClO4)3]. Chinese Chem. Lett. 2020, 31(2), 554-558.
- [3] Chen, S.; Yang, Z.; Wang, B.; Shang, Y.; Sun, L.; He, C.; Zhou, H.; Zhang, W.; Chen, X. Molecular Perovskite High-energetic Materials. Sci. China Mater. 2018, 61(8): 1123-1128.
- [4] Shang, Y.; Huang, R.; Chen, S.; He, C.; Yu, Z.; Ye, Z.; Zhang, W.; Chen, X. Metalfree Molecular Perovskite High-energetic Materials. Cryst. Growth Des. 2020, 20(3): 1891-1897.
- [5] Deng, P.; Wang, H.; Yang, X.; Ren, H.; Jiao, Q. Thermal Decomposition and Combustion Performance of High-energy Ammonium Perchlorate-based Molecular Perovskite. J. Alloy Compd. 2020, 827: 154257.
- [6] Jia, Q.; Bai, X.; Zhu, S.; Cao, X.; Deng, P.; Hu, L. Fabrication and Characterization of Nano (H2dabco)[K(ClO4)3] Molecular Perovskite by Ball Milling. J. Energ. Mater. 2019: 1-9.
- [7] Li, X.; Hu, S.; Cao, X.; Hu, L.; Deng, P.; Xie, Z. Ammonium Perchloratebased Molecular Perovskite Energetic Materials: Preparation, Characterization, and Thermal Catalysis Performance with MoS2. J. Energ. Mater. 2020, 38(2):162-169.
- [8] Jia, Q.; Deng, P.; Li, X.; Hu, L.; Cao, X. Insight into the Thermal Decomposition Properties of Potassium Perchlorate (KClO4)-based Molecular Perovskite. Vacuum 2020, 175: 109257.
- [9] Bolton, O.; Matzger, A. Improved Stability and Smart-material Functionality Realized in an Energetic Cocrystal. Angew. Chem., Int. Ed. 2011, 123(38):9122-9125.
- [10] Li, S.; Wang, Y.; Qi, C.; Zhao, X.; Zhang, J.; Zhang, S.; Pang, S. 3D Energetic Metal-organic Frameworks: Synthesis and Properties of High Energy Materials. Angew. Chem., Int. Ed. 2013, 52(52): 14031-14035.
- [11] Deng, P.; Jiao, Q.; Ren, H. Synthesis of Nitrogen-doped Porous Hollow Carbon Nanospheres with a High Nitrogen Content: A Sustainable Synthetic Strategy Using Energetic Precursors. Sci. Total Environ. 2020, 714: 136725.
- [12] Lei, J.; Liu, H.; Yin, D.; Zhou, L.; Liu, J.; Chen, Q.; Cui, X.; He, R.; Duan, T.; Zhu, W. Boosting the Loading of Metal Single Atoms via a Bioconcentration Strategy. Small 2020, 16(10): 1905920.
- [13] Deng, P.; Liu, Y.; Luo, P.; Wang, J.; Liu, Yu.; Wang, D.; He, Y. Two-steps Synthesis of Sandwich-like Graphene Oxide/LLM-105 Nanoenergetic Composites Using Functionalized Grapheme. Mater. Lett. 2017, 194: 156-159.
- [14] Thiruvengadathan, R.; Chung, S.; Basuray, S.; Balasubramanian, B.; Staley, C.; Gangopadhyay, K.; Gangopadhyay, S. A Versatile Self-assembly Approach toward High Performance Nanoenergetic Composite Using Functionalized Graphene. Langmuir 2014, 30(22): 6556-6564.
- [15] Lei, J.; Guo, Q.; Yin, D.; Cui, X.; He, R.; Duan, T.; Zhu, W. Bioconcentration and Bioassembly of N/S Co-doped Carbon with Excellent Stability for Supercapacitors. Appl. Surf. Sci. 2019, 488: 316-325.
- [16] Yan, Q.; Gozin, M.; Zhao, F.; Cohen, A.; Pang. S. Highly Energetic Compositions Based on Functionalized Carbon Nanomaterials. Nanoscale 2016, 8(9): 4799-4851.
- [17] Yu, L.; Ren, H.; Guo, X.; Jiang, X.; Jiao, J. A Novel ε-HNIW-based Insensitive High Explosive Incorporated with Reduced Graphene Oxide. J. Therm. Anal. Calorim. 2014, 117(3): 1187-1199.
- [18] Fleming, K. Hazard Assessments of Energetic Systems, a Field Still in Development. Propellants, Explos., Pyrotech. 2018, 43(5): 433-435.
- [19] Deng, P.; Xu, J.; Li, S.; Huang, S.; Zhang, H.; Wang, J.; Liu, Y. A Facile One-pot Synthesis of Monodisperse Hollow Hexanitrostilbenepiperazine Compound Microspheres. Mater. Lett. 2018, 214: 45-49.
- [20] Li, R.; Wang, J.; Shen, J.; Hua, C.; Yang, G. Preparation and Characterization of Insensitive HMX/Graphene Oxide Composites. Propellants, Explos., Pyrotech. 2013, 38(6): 798-804.
- [21] Liu, T.; Geng, C.; Zheng, B.; Li, S.; Luo, G. Encapsulation of Cyclotetramethylenetetranitramine (HMX) by Electrostatically Self-assembled Graphene Oxide for Desensitization. Propellants, Explos., Pyrotech. 2017, 42(9):1057-1065.
- [22] Zhang, J.; Wang, X.; Qi, G.; Li, B.; Song, Z.; Jiang, H.; Zhang, X.; Qiao, J. A Novel N-Doped Porous Carbon Microsphere Composed of Hollow Carbon Nanospheres. Carbon 2016, 96: 864-870.
- [23] Wang, Y.; Zou, H.; Zeng, S.; Pan, Y.; Wang, R.; Wang, X.; Sun, Q.; Zhang, Z.; Qiu, S. A One-step Carbonization Route Towards Nitrogen-doped Porous Carbon Hollow Spheres with Ultrahigh Nitrogen Content for CO2 Adsorption. Chem. Commun. 2015, 51(62): 12423-12436.
- [24] Hu, L.; Liu, Y.; Hu, S.; Wang, Y. 1T/2H Multi-phase MoS2 Heterostructure: Synthesis, Characterization and Thermal Catalysis Decomposition of Dihydroxylammonium 5,5′-Bistetrazole-1,1′-diolate. New J. Chem. 2019, 43(26): 10434-10441.
- [25] Chen, J.; He, S.; Huang, B.; Wu, P.; Qiao, Z.; Wang, J.; Zhang, L.; Yang, G.; Huang, H. Enhanced Thermal Decomposition Properties of CL-20 through Spaceconfining in Three-dimensional Hierarchically Ordered Porous Carbon. ACS Appl. Mater. Interfaces 2017, 9(12): 10684-10691.
- [26] Han, K.; Zhang, X.; Deng, P.; Jiao, Q.; Chu, E. Study of the Thermal Catalysis Decomposition of Ammonium Perchlorate-based Molecular Perovskite with Titanium Carbide MXene. Vacuum 2020, 180: 109572.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-debf65e7-1a07-4d73-9219-4fc0e047d9aa