PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Two stage contour evolution for automatic segmentation of choroid and cornea in OCT images

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Enhanced depth imaging optical coherence tomography (EDI OCT) enables visualization of deeper layers of retina, the segmentation of which can help in the diagnosis of many ophthalmic diseases. Though, a wide variety of segmentation algorithms are available for clinical practice in retinal analysis, segmentation of cornea and choroid are still done manually due to the lack of automated segmentation tools. This paper proposes a multilevel contour evolution approach for segmenting various layers of cornea and choroid. Rotating kernel transformation (RKT) is applied for enhancing the edges followed by two stage contour evolution for detecting edges. Choroid/cornea thickness obtained using our algorithm is compared with manual segmented images traced by ophthalmologists. The algorithm showed good consistency and high correlation with manual segmentation. The results, provided separately for choroid and cornea segmentation prove the efficiency of the proposed method.
Twórcy
  • Department of ECE, College of Engineering, Thiruvananthapuram, Kerala, India
autor
  • Department of ECE, College of Engineering, Thiruvananthapuram, Kerala, India
Bibliografia
  • [1] Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science (New York NY) 1991;254(5035):1178.
  • [2] Margolis R, Spaide RF. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol 2009;147(5):811–5.
  • [3] Raghavendra U, Bhandary SV, Gudigar A, Acharya UR. Novel expert system for glaucoma identification using non-parametric spatial envelope energy spectrum with fundus images. Biocybern Biomed Eng 2018;38(1):170–80.
  • [4] Beau GC, Fenner J. Characterising choroidal features with spectral domain OCT. http://europe.ophthalmologytimes.com/oct.
  • [5] Garcia-Martin E, Jarauta L, Vilades E, Ara JR, Martin J, Polo V, et al. Ability of swept-source optical coherence tomography to detect retinal and choroidal changes in patients with multiple sclerosis. J Ophthalmol 2018. http://dx.doi.org/10.1155/2018/7361212.
  • [6] Kong M, Choi DY, Han G, Song Y-M, Park SY, Sung J, et al. Measurable range of subfoveal choroidal thickness with conventional spectral domain optical coherence tomography. Trans Vis Sci Technol 2018;7(5):16.
  • [7] Neetha G, Jiji C. A two stage contour evolution approach for the measurement of choroid thickness in EDI-OCT images. Computer Vision, Pattern Recognition, Image Processing, and Graphics: 6th National Conference, NCVPRIPG 2017; 2018. pp. 436–45.
  • [8] Lang A, Carass A, Hauser M, Sotirchos ES, Calabresi PA, Ying HS, et al. Retinal layer segmentation of macular OCT images using boundary classification. Biomed Opt Express 2013;4 (7):1133–52.
  • [9] Ji Z, Chen Q, Niu S, Leng T, Rubin DL. Beyond retinal layers: a deep voting model for automated geographic atrophy segmentation in SD-OCT images. Trans Vis Sci Technol 2018;7(1):1.
  • [10] Vercellin ACV, Jassim F, Poon LY-C, Tsikata E, Braaf B, Shah S, et al. Diagnostic capability of three-dimensional macular parameters for glaucoma using optical coherence tomography volume scans. Invest Ophthalmol Vis Sci 2018;59(12):4998–5010.
  • [11] Montuoro A, Waldstein SM, Gerendas BS, Schmidt-Erfurth U, Bogunovic´ H. Joint retinal layer and fluid segmentation in OCT scans of eyes with severe macular edema using unsupervised representation and auto-context. Biomed Opt Express 2017;8(3):1874–88.
  • [12] Chiu SJ, Li XT, Nicholas P, Toth CA, Izatt JA, Farsiu S. Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt Express 2010;18(18):19413–28.
  • [13] Duan J, Tench C, Gottlob I, Proudlock F, Bai L. Optical coherence tomography image segmentation. 2015 IEEE International Conference on Image Processing (ICIP); 2015. pp. 4278–82.
  • [14] Duan J, Tench C, Gottlob I, Proudlock F, Bai L. Automated segmentation of retinal layers from optical coherence tomography images using geodesic distance. Pattern Recogn 2017;72:158–75.
  • [15] Kajić V, Esmaeelpour M, Považay B, Marshall D, Rosin PL, Drexler W. Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model. Biomed Opt Express 2012;3(1):86–103.
  • [16] Danesh H, Kafieh R, Rabbani H, Hajizadeh F. Segmentation of choroidal boundary in enhanced depth imaging OCTs using a multiresolution texture based modeling in graph cuts. Comput Math Methods Med 2014;20:1–9.
  • [17] Zhang L, Buitendijk GH, Lee K, Sonka M, Springelkamp H, Hofman A, et al. Validity of automated choroidal segmentation in SS-OCT and SD-OCT. Invest Ophthalmol Vis Sci 2015;56(5):3202–11.
  • [18] Alonso-Caneiro D, Read SA, Collins MJ. Automatic segmentation of choroidal thickness in optical coherence tomography. Biomed Opt Express 2013;4(12):2795–812.
  • [19] Mazzaferri J, Beaton L, Hounye G, Sayah DN, Costantino S. Open-source algorithm for automatic choroid segmentation of OCT volume reconstructions. Sci Rep 2017;7:42112.
  • [20] Chen M, Wang J, Oguz I, VanderBeek BL, Gee JC. Automated segmentation of the choroid in EDI-OCT images with retinal pathology using convolution neural networks. Fetal, infant and ophthalmic medical image analysis. Springer; 2017. p. 177–84.
  • [21] Eichel J, Mishra A, Fieguth P, Clausi D, Bizheva K. A novel algorithm for extraction of the layers of the cornea. Canadian Conference on Computer and Robot Vision, 2009, CRV'09; 2009. pp. 313–20.
  • [22] LaRocca F, Chiu SJ, McNabb RP, Kuo AN, Izatt JA, Farsiu S. Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming. Biomed Opt Express 2011;2(6):1524–38.
  • [23] Jahromi MK, Kafieh R, Rabbani H, Dehnavi AM, Peyman A, Hajizadeh F, et al. An automatic algorithm for segmentation of the boundaries of corneal layers in optical coherence tomography images using Gaussian mixture model. J Med Signals Sens 2014;4(3):171.
  • [24] Zhang T, Elazab A, Wang X, Jia F, Wu J, Li G, et al. A novel technique for robust and fast segmentation of corneal layer interfaces based on spectral-domain optical coherence tomography imaging. IEEE Access 2017;5:10352–63.
  • [25] Lee Y-K, Rhodes WT. Nonlinear image processing by a rotating kernel transformation. Opt Lett 1990;15(23):1383–5.
  • [26] Stankiewicz A, Marciniak T, Dabrowski A, Stopa M, Rakowicz P, Marciniak E. Denoising methods for improving automatic segmentation in OCT images of human eye. Bull Pol Acad Aci Tech Sci 2017;65(1):71–8.
  • [27] Ma Y, Chen X, Zhu W, Cheng X, Xiang D, Shi F. Speckle noise reduction in optical coherence tomography images based on edge-sensitive cGAN. Biomed Opt Express 2018;9 (11):5129–46.
  • [28] Duan J, Lu W, Tench C, Gottlob I, Proudlock F, Samani NN, et al. Denoising optical coherence tomography using second order total generalized variation decomposition. Biomed Signal Process Control 2016;24:120–7.
  • [29] Lu W, Duan J, Qiu Z, Pan Z, Liu RW, Bai L. Implementation of high-order variational models made easy for image processing. Math Methods Appl Sci 2016;39(14):4208–33.
  • [30] Chan TF, Vese LA. Active contours without edges. IEEE Trans Image Process 2001;10(2):266–77.
  • [31] Soomro S, Munir A, Choi KN. Hybrid two-stage active contour method with region and edge information for intensity inhomogeneous image segmentation. PLoS One 2018;13(1):e0191827.
  • [32] Duan J, Xie W, Liu RW, Tench C, Gottlob I, Proudlock F, et al. Oct segmentation: integrating open parametric contour model of the retinal layers and shape constraint to the Mumford-Shah functional. International Workshop on Shape in Medical Imaging. Springer; 2018. p. 178–88.
  • [33] Bai F, Gibson SJ, Marques MJ, Podoleanu A. Superpixel guided active contour segmentation of retinal layers in OCT volumes. 2nd Canterbury Conference on OCT with Emphasis on Broadband Optical Sources, vol. 10591; 2018. p. 1059106.
  • [34] Duan J, Pan Z, Yin X, Wei W, Wang G. Some fast projection methods based on Chan-Vese model for image segmentation. EURASIP J Image Video Process 2014;2014 (1):7.
  • [35] Beaton L, Mazzaferri J, Lalonde F, Hidalgo-Aguirre M, Descovich D, Lesk M, et al. Non-invasive measurement of choroidal volume change and ocular rigidity through automated segmentation of high-speed OCT imaging. Biomed Opt Express 2015;6(5):1694–706.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-deb7b190-e861-483a-8bec-1b3156239c65
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.