PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The overview of optimization methods applied to Truss-Z modular system

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Extremely Modular Systems (EMSs) are comprised of as few types of modules as possibleand allow creating structurally sound free-form structures that are not constrained bya regular tessellation of space. Truss-Z is the first EMS introduced, and its purpose isto create free-form pedestrian ramps and ramp networks in any given environment. Thispaper presents an overview of various multi-objective optimization methods applied toTruss-Z structures.
Rocznik
Strony
155--176
Opis fizyczny
Bibliogr. 27 poz., il., wykr.
Twórcy
  • Institute of Fundamental Technological Research Polish Academy of Sciences Pawinskiego 5B, 02-106 Warsaw, Poland
Bibliografia
  • 1. R.E. Smith, Prefab architecture: a guide to modular design and construction, John Wiley & Sons, Hoboken, NJ, 2011.
  • 2. M. Zawidzki, Discrete optimization in architecture – Extremely modular systems, Springer Briefs in Architectural Design and Technology, Springer Singapore, 2017, doi: 10.1007/978-981-10-1109-2.
  • 3. M. Zawidzki, Selected applications of computational intelligence methods to optimization in architecture, [in:] Workshop on Engineering Optimization, November 4th 2019, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland, 2019, http://bluebox.ippt.pan.pl/~ptauzow/WEO/presentations/Prezentacja%20MZ.pdf.
  • 4. P. van Beek, Backtracking search algorithms, [in:] Foundations of artificial intelligence, F. Rossi, P. van Beek, T. Walsh [Eds], Vol. 2, pp. 85–134, Elsevier, Amsterdam, 2006.
  • 5. D.E. Knuth, The art of computer programming, Addison-Wesley, Reading, Mass., 1968.
  • 6. E. Gurari, CIS 680: DATA STRUCTURES: Chapter 19: Backtracking algorithms, 1999, online course available at https://web.archive.org/web/20070317015632/http://www.cse.ohio-state.edu/~gurari/course/cis680/cis680Ch19.html#QQ1-51-128.
  • 7. M. Zawidzki, K. Nishinari, Modular Truss-Z system for self-supporting skeletal free-form pedestrian networks, Advances in Engineering Software, 47 (1): 147–159, 2012, doi: 10.1016/j.advengsoft.2011.12.012.
  • 8. Z. Michalewicz, D.B. Fogel, How to solve it: modern heuristics, Springer Verlag, Berlin, 2013, doi: 10.1007/978-3-662-07807-5.
  • 9. I. Rechenberg, Evolution strategy – optimization of technical systems according to the principles of biological evolution [in German: Evolutionsstrategie – Optimierung technis- cher Systeme nach Prinzipien der biologischen Evolution ], PhD thesis, 1971.
  • 10. M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, Cambridge, MA, 1996.
  • 11. M. Zawidzki, K. Nishinari, Application of evolutionary algorithms for optimum layout of Truss-Z linkage in an environment with obstacles, Advances in Engineering Software, 65 : 43–59, 2013, doi: 10.1016/j.advengsoft.2013.04.022.
  • 12. E.W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik, 1 : 269–271, 1959, doi: 10.1007/BF01386390.
  • 13. D.R. Morrison, S.H. Jacobson, J.J. Sauppe, E.C. Sewell, Branch-and-bound algorithms: A survey of recent advances in searching, branching, and pruning, Discrete Optimization, 19 : 79–102, 2016, doi: 10.1016/j.disopt.2016.01.005.
  • 14. M. Zawidzki, Retrofitting of pedestrian overpass by Truss-Z modular systems using graphtheory approach, Advances in Engineering Software, 81 : 41–49, 2015, doi: 10.1016/j.advengsoft.2014.11.004.
  • 15. A. Gottlieb, G.S. Almasi, Highly parallel computing, Benjamin/Cummings Publishing, Redwood City, CA, 1989.
  • 16. M. Zawidzki, J. Szklarski, Effective multi-objective discrete optimization of Truss-Z layouts using a GPU, Applied Soft Computing, 70 : 501–512, 2018, doi: 10.1016/j.asoc.2018.05.042.
  • 17. M. Zawidzki, Optimization of multi-branch Truss-Z based on evolution strategy, Advances in Engineering Software, 100 : 113–125, 2016, doi: 10.1016/j.advengsoft.2016.07.015.
  • 18. A. Tugilimana, A.P. Thrall, R.F. Coelho, Conceptual design of modular bridges including layout optimization and component reusability, Journal of Bridge Engineering, 22 (11), 04017094, 2017, doi: 10.1061/(ASCE)BE.1943-5592.0001138.
  • 19. B.R. Torstenfelt, A. Klarbring, Structural optimization of modular product families with application to car space frame structures, Structural and Multidisciplinary Optimization, 32 (2): 133–140, 2006.
  • 20. E. Moses, M.B. Fuchs, M.B. Ryvkin, Topological design of modular structures under arbitrary loading, Structural and Multidisciplinary Optimization, 24 (6): 407–417, 2002.
  • 21. C.W. Zhou, J.P. Lainé, M. Ichchou, A.M. Zine, Multi-scale modelling for two-dimensional periodic structures using a combined mode/wave based approach, Computers & Structures, 154 : 145–162, 2015.
  • 22. M. Zawidzki, Ł. Jankowski, Optimization of modular Truss-Z by minimum-mass design under equivalent stress constraint, Smart Structures and Systems, 21 (6): 715–725, 2018, doi: 10.12989/sss.2018.21.6.715.
  • 23. LRFD Guide Specification for the Design of Pedestrian Bridges, American Association of State Highway and Transportation Officials (AASHTO), Washington, DC, 2009.
  • 24. M. Zawidzki, Ł. Jankowski, Multiobjective optimization of modular structures: weight versus geometric versatility in a Truss-Z system, Computer-Aided Civil and Infrastructure Engineering, 34 (11): 1026–1040, 2019, doi: 10.1111/mice.12478.
  • 25. D. Pisarski, R. Konowrocki, Ł. Jankowski, Scalable distributed optimal control of vibrating modular structures, Structural Control and Health Monitoring, 27 (4), e2502-1-21, 2020, doi: 10.1002/stc.2502.
  • 26. B. Popławski, G. Mikułowski, A. Mróz, Ł. Jankowski, Decentralized semi-active damping of free structural vibrations by means of structural nodes with an on/off ability to transmit moments, Mechanical Systems and Signal Processing, 100 : 926–939, 2018, doi: 10.1016/j.ymssp.2017.08.012.
  • 27. J. Hou, Ł. Jankowski, J. Ou, Frequency-domain substructure isolation for local damage identification, Advances in Structural Engineering, 18 (1): 137–153, 2015, doi: 10.1260/1369-4332.18.1.137.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-deb7121e-2108-4949-ace1-1780d8b7d570
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.