PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of hydrothermal depolymerization and enzymatic hydrolysis of Miscanthus giganteus biomass on the yield of methane fermentation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study determined the effect of preliminary hydrothermal depolymerization and enzymatic hydrolysis of Miscanthus giganteus biomass on the yield of methane fermentation in terms of the quantity and composition of biogas produced. Enzymatic hydrolysis of the substrate led to an increase in the volume of biogas produced from 0.12 dm3/g substrate in the samples without enzymes to 0.17 dm3/g substrate in variant I, as well as a significant increase in methane. In addition, there were noticeable decreases in dry matter content in all variants to which the enzymatic multicomplex had been added.
Rocznik
Tom
Strony
209--218
Opis fizyczny
Bibliogr. 18 poz., tab., wykr.
Twórcy
  • Department of Environment Protection Engineering, University of Warmia and Mazury in Olsztyn
autor
  • Department of Environment Protection Engineering, University of Warmia and Mazury in Olsztyn
  • Department of Environment Protection Engineering, University of Warmia and Mazury in Olsztyn
autor
  • Department of Environment Protection Engineering, University of Warmia and Mazury in Olsztyn
autor
  • Department of Environment Protection Engineering, University of Warmia and Mazury in Olsztyn
autor
  • Department of Environment Protection Engineering, University of Warmia and Mazury in Olsztyn
autor
  • Department of Environment Protection Engineering, University of Warmia and Mazury in Olsztyn
Bibliografia
  • BRETHAUER S., WYMAN C. 2010. Rewiev Continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresource Technology, 101: 4862-4874.
  • CARRÉRE H., DUMAS C., BATTIMELLI A., BATSTONE D., DELGENÉS J., STEYER J., FERRER I. 2010. Pretreatment methods to improve sludge anaerobic degradability: A review Review Article. Journal of Hazardous Materials, 183(1-3): 1-15.
  • DHAR B., NAKHLA G., RAY M. 2012. Techno-economic evaluation of ultrasound and thermal pretreatments for enhanced anaerobic digestion of municipal waste activated sludge. Waste Management, 32(3): 542-549.
  • DINUCCIO E., BALSARI P., GIOELLI F.,MENARDO S. 2010. Evaluation of the biogas productivity potential of some Italian agro-industrial biomasses. Bioresource Technology, 101(10): 3780-3783.
  • EDER B., GUNTHERT F. 2002. Practical experience of sewage sludge disintegration by ultrasounds. TU Hamburg-Harburg Reports of Sanit. Eng., 35: 173-188.
  • KIM J., PARK C., KIM T., LEE M., KIM S., LEE J. 2003. Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J. of Bioscience and Bioeng., 95 (3), 271-275.
  • MICHALSKA K., MIAZEK K., KRZYSTEK L., LEDAKOWICZ S. 2012. Influence of pretreatment with Fenton’s reagent on biogas production and methane yield from lignocellulosic biomass. Bioresource Technology, 119: 72-78.
  • NEVES L., RIBEIRO R., OLIVEIRA R., ALVES M.M. 2006. Enhancement of methane production from barley waste. Biomass and Bioenergy, 30: 599-603.
  • RAS M., LARDON L., SIALVE B., BERNET N., STEYER J.P. 2011. Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresource Technology, 102: 200.
  • ROQUE R., BAIG M.N., LEEKE G.A., BOWRA S., SANTOS R.C.D. 2012. Study on sub-critical water mediated hydrolysis of Miscanthus a lignocellulosic biomass. Original Research Article Resources, Conservation and Recycling, 59: 43-46.
  • SEBESTYÉN Z., JAKAB E., MAY Z., SIPOS B., RÉCZEY K. 2013. Thermal behavior of native, washed and steam exploded lignocellulosic biomass samples. Original Research Article Journal of Analytical and Applied Pyrolysis, 101: 61-71.
  • SHEHU M., MANAN Z., ALWI S. 2012 Optimization of thermo-alkaline disintegration of sewage sludge for enhanced biogas yield. Bioresource Technology, 114: 69-74.
  • SHIRSATH S., SONAWANE S., GOGATE P. 2012. Intensification of extraction of natural products using ultrasonic irradiations, Chemical Engineering and Processing: Process Intensification, 53: 10-23.
  • SIALVE B., BERNET N., BERNARD O. 2009. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnology Advances, 27: 409.
  • SIMOES R., LXEITE R., BOCCHINI D.A., DA SILVA MARTINS E., SILVA D., GOMES E, DA SILVA R. 2007. Production of Cellulolytic and Hemicellulolytic Enzymes From Aureobasidium pulluans on Solid State Fermentation. Applied Biochemistry and Biotechnology, 31: 136-140.
  • WEILAND P. 2003. Production and energetic use of biogas from energy crops and wastes in Germany. Applied Biochemistry and Biotechnology, 109: 263-274.
  • YANGA S., LIA J., ZHENGA Z., MENG Z. 2009. Characterization of Spartina alterniflora as feedstock for anaerobic digestion. Biomass and Bioenergy, 33: 597- 602.
  • YONGZHI C., YUYOU L., XUENING F., SHAOPO W., HONGYING Y. 2011. Enhancement of thermophilic anaerobic digestion of thickened waste activated sludge by combined microwave and alkaline pretreatment. Journal of Environmental Sciences, 23(8): 1257-1265.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-deb3fccd-3ba4-4b13-85c0-ee9e321dceb7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.