Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A major goal in modern flight control systems is the need for improving reliability. This work presents a health-aware and fault-tolerant control approach for an octorotor UAV that allows distributing the control effort among the available actuators based on their health information. However, it is worth mentioning that, in the case of actuator fault occurrence, a reliability improvement can come into conflict with UAV controllability. Therefore, system reliability sensitivity is redefined and modified to prevent uncontrollable situations during the UAV’s mission. The priority given to each actuator is related to its importance in system reliability. Moreover, the proposed approach can reconfigure the controller to compensate actuator faults and improve the overall system reliability or delay maintenance tasks.
Rocznik
Tom
Strony
47--59
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
- Polytechnic University of Catalonia (UPC), Research Center for Supervision, Safety and Automatic Control (CS2AC), 10, Rambla Sant Nebridi, Terrassa, Spain
autor
- Polytechnic University of Catalonia (UPC), Research Center for Supervision, Safety and Automatic Control (CS2AC), 10, Rambla Sant Nebridi, Terrassa, Spain
autor
- Polytechnic University of Catalonia (UPC), Research Center for Supervision, Safety and Automatic Control (CS2AC), 10, Rambla Sant Nebridi, Terrassa, Spain
autor
- Polytechnic University of Catalonia (UPC), Research Center for Supervision, Safety and Automatic Control (CS2AC), 10, Rambla Sant Nebridi, Terrassa, Spain
Bibliografia
- [1] Abdolhosseini, M., Zhang, Y. and Rabbath, C. (2013). An efficient model predictive control scheme for an unmanned quadrotor helicopter, Journal of Intelligent & Robotic Systems 70(1–4): 27–38.
- [2] Adîr, V. and Stoica, A. (2012). Integral LQR control of a star-shaped octorotor, INCAS BULLETIN 4(2): 3–18.
- [3] Alwi, H. and Edwards, C. (2006). Sliding mode FTC with on-line control allocation, Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, CA, USA, pp. 5579–5584.
- [4] Birnbaum, Z. (1969). On the importance of different components in a multicomponent system, in P. Krishnaiah (Ed.), Multivariate Analysis, Vol. II, Academic Press, New York, NY, pp. 581–592.
- [5] Blakelock, J. (1991). Automatic Control of Aircraft and Missiles, John Wiley & Sons, New York, NY.
- [6] Bodson, M. (2002). Evaluation of optimization methods for control allocation, Journal of Guidance, Control, and Dynamics 25(4): 703–711.
- [7] Bordingnon, K. and Durham, W. (1995). Closed-form solutions to constrained control allocation problem, Journal of Guidance, Control, and Dynamics 18(5): 1000–1007.
- [8] Cen, Z., Noura, H. and Younes, Y.A. (2015). Systematic fault tolerant control based on adaptive Thau observer estimation for quadrotor UAVs, International Journal of Applied Mathematics and Computer Science 25(1): 159–174, DOI: 10.1515/amcs-2015-0012.
- [9] Cox, D.R. (1972). Regression models and life-tables, Journal of the Royal Statistical Society B (Methodological) 34(2): 187–220.
- [10] Durham, W.C. (1993). Constrained control allocation, Journal of Guidance, Control, and Dynamics 16(4): 717–725.
- [11] Freddi, A., Lanzon, A. and Longhi, S. (2011). A feedback linearization approach to fault tolerance in quadrotor vehicles, IFAC Proceedings Volumes 44(1): 5413–5418.
- [12] Gertsbakh, I.B. (2001). Reliability Theory: With Applications to Preventive Maintenance, 2nd Edn, Springer, New York, NY.
- [13] Johansen, T. and Fossen, T. (2013). Control allocation—a survey, Automatica 49(5): 1087–1103.
- [14] Khelassi, A., Theilliol, D., Weber, P. and Ponsart, J. (2011). Fault-tolerant control design with respect to actuator health degradation: An LMI approach, Proceedings of the IEEE International Conference on Control Applications (CCA), Denver, CO, USA, pp. 983–988.
- [15] Liu, C., Chen, W.-H. and Andrews, J. (2012). Tracking control of small-scale helicopters using explicit nonlinear MPC augmented with disturbance observers, Control Engineering Practice 20(3): 258–268.
- [16] Mahony, R., Kumar, V. and Corke, P. (2012). Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor, IEEE Robotics Automation Magazine 19(3): 20–32.
- [17] Marks, A., Whidborne, J. and Yamamoto, I. (2012). Control allocation for fault tolerant control of a VTOL octorotor, 2012 UKACC International Conference on Control (CONTROL), Cardiff, UK, pp. 357–362.
- [18] Merheb, A.-R., Noura, H. and Bateman, F. (2015). Design of passive fault-tolerant controllers of a quadrotor based on sliding mode theory, International Journal of Applied Mathematics and Computer Science 25(3): 561–576, DOI: 10.1515/amcs-2015-0042.
- [19] Milhim, A., Zhang, Y. and Rabbath, C.-A. (2010). Gain scheduling based PID controller for fault tolerant control of quad-rotor UAV, Proceedings of AIAA Infotech@ Aerospace 2010, Atlanta, GA, USA, pp. 1–13.
- [20] Ogata, K. (1995). Discrete-time Control Systems, 2nd Edn, Prentice-Hall, Upper Saddle River , NJ.
- [21] Raffo, G., Ortega, M. and Rubio, F. (2010). An integral predictive/nonlinear control structure for a quadrotor helicopter, Automatica 46(1): 29–39.
- [22] Rinaldi, F., Gargioli, A. and Quagliotti, F. (2014). PID and LQ regulation of a multirotor attitude: Mathematical modelling, simulations and experimental results, Journal of Intelligent & Robotic Systems 73(1–4): 33–50.
- [23] Rotondo, D., Nejjari, F. and Puig, V. (2015). Robust quasi-LPV model reference FTC of a quadrotor UAV subject to actuator faults, International Journal of Applied Mathematics and Computer Science 25(1): 7–22, DOI: 10.1515/amcs-2015-0001.
- [24] Salazar, J., Nejjari, F., Sarrate, R., Weber, P. and Theilliol, D. (2016). Reliability importance measures for a health-aware control of drinking water networks, Proceedings of the 3rd Conference on Control and Fault-Tolerant Systems (Sys-Tol), Barcelona, Spain, pp. 572–578.
- [25] Salazar, J., Sanjuan, A., Nejjari, F. and Sarrate, R. (2017). Health-Aware control of an octorotor UAV system based on actuator reliability, Proceedings of the 4th International Conference on Control, Decision and Information Technologies (CoDIT), Barcelona, Spain, pp. 815–820.
- [26] Salazar, J., Weber, P., Nejjari, F., Theilliol, D. and Sarrate, R. (2015). MPC framework for system reliability optimization, in Z. Kowalczuk (Ed.), Advanced and Intelligent Computations in Diagnosis and Control, Springer International Publishing, Cham, pp. 161–177.
- [27] Sanjuan, A., Nejjari, F. and Sarrate, R. (2019). Reconfigurability analysis of multirotor UAVs under actuator faults, Proceedings of the 4th Conference on Control and Fault-Tolerant Systems (SysTol), Casablanca, Morocco, pp. 26–31.
- [28] Schneider, T., Ducard, G., Konrad, R. and Pascal, S. (2012). Fault-tolerant control allocation for multirotor helicopters using parametric programming, International Micro Air Vehicle Conference and Flight Competition (IMAV), Braunschweig, Germany, pp. 1–8.
- [29] Zhang, Y., Chamseddine, A., Rabbath, C., Gordon, B., Su, C.-Y., Rakheja, S., Fulford, C., Apkarian, J. and Gosselin, P. (2013). Development of advanced FDD and FTC techniques with application to an unmanned quadrotor helicopter testbed, Journal of the Franklin Institute 350(9): 2396–2422.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-deb2f165-6686-4bc0-8f75-1c50cab57331