PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Properties of a subclass of analytic functions defined by Riemann-Liouville fractional integral applied to convolution product of multiplier transformation and Ruscheweyh derivative

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The contribution of fractional calculus in the development of different areas of research is well known. This article presents investigations involving fractional calculus in the study of analytic functions. Riemann-Liouville fractional integral is known for its extensive applications in geometric function theory. New contributions were previously obtained by applying the Riemann-Liouville fractional integral to the convolution product of multiplier transformation and Ruscheweyh derivative. For the study presented in this article, the resulting operator is used following the line of research that concerns the study of certain new subclasses of analytic functions using fractional operators. Riemann-Liouville fractional integral of the convolution product of multiplier transformation and Ruscheweyh derivative is applied here for introducing a new class of analytic functions. Investigations regarding this newly introduced class concern the usual aspects considered by researchers in geometric function theory targeting the conditions that a function must meet to be part of this class and the properties that characterize the functions that fulfil these conditions. Theorems and corollaries regarding neighborhoods and their inclusion relation involving the newly defined class are stated, closure and distortion theorems are proved, and coefficient estimates are obtained involving the functions belonging to this class. Geometrical properties such as radii of convexity, starlikeness, and close-to-convexity are also obtained for this new class of functions.
Wydawca
Rocznik
Strony
art. no. 20220249
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
  • Department of Mathematics and Computer Science, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania
autor
  • Department of Mathematics and Informatics, Lucian Blaga University of Sibiu, Str. Dr. I. Raţiu, No. 5–7, RO-550012 Sibiu, Romania
Bibliografia
  • [1] D. Baleanu and R. P. Agarwal, Fractional calculus in the sky, Adv. Differential Equations 2021 (2021), 117, DOI: https://doi.org/10.1186/s13662-021-03270-7.
  • [2] H. M. Srivastava, An introductory overview of fractional-calculus operators based upon the fox-wright and related higher transcendental functions, J. Adv. Eng. Comput. 5 (2021), 135–166.
  • [3] S. Owa, On the distortion theorems I, Kyungpook Math. J. 18 (1978), 53–59.
  • [4] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Can. J. Math. 39 (1987), 1057–1077.
  • [5] H. M. Srivastava, M. Saigo, and S. Owa, A class of distortion theorems involving certain operators of fractional calculus, J. Math. Anal. Appl. 131 (1988), 412–420.
  • [6] V. Kiryakova, The special functions of fractional calculus as generalized fractional calculus operators of some basic functions, Comput. Math. Appl. 9 (2010), no. 3, 1128–1141.
  • [7] R. W. Ibrahim and M. Darus, On analytic functions associated with the Dziok-Srivastava linear operator and Srivastava-Owa fractional integral operator, Arab. J. Sci. Eng. 36 (2011), 441–450, DOI: https://doi.org/10.1007/s13369-011-0043-y.
  • [8] H. M. Srivastava, M. Darus, and R. W. Ibrahim, Classes of analytic functions with fractional powers defined by means of a certain linear operator, Integral Transforms Spec. Funct. 22 (2011), no. 1, 17–28, DOI: https://doi.org/10.1080/10652469.2010.489796.
  • [9] J. K. Prajapat and R. K. Raina, New sufficient conditions for starlikeness of analytic functions involving a fractional differintegral operator, Demonstr. Math. 43 (2010), no. 4, 805–814, DOI: https://doi.org/10.1515/dema-2010-0408.
  • [10] M. K. Aouf, A. O. Mostafa, and H. M. Zayed, Subordination and superordination properties of p-valent functions defined by a generalized fractional differintegral operator, Quaest. Math. 39 (2016), no. 4, 545–560, DOI: https://doi.org/10.2989/16073606.2015.1113212.
  • [11] P. Sharma, R. K. Raina, and G. S. Sălăgean, Some geometric properties of analytic functions involving a new fractional operator, Mediterr. J. Math. 13 (2016), 4591–4605. DOI: https://doi.org/10.1007/s00009-016-0764-y.
  • [12] H. M. Srivastava, M. Bansal, and P. Harjule, A study of fractional integral operators involving a certain generalized multi-index Mittag-Leffler function, Math. Meth. Appl. Sci. 41 (2018), 6108–6121.
  • [13] I. Nayab, S. Mubeen, R. S. Ali, G. Rahman, A-H. Abdel-Aty, E. E. Mahmoud, et al., Estimation of generalized fractional integral operators with nonsingular function as a kernel, AIMS Math. 6 (2021), no. 5, 4492–4506, DOI: https://doi.org/10.3934/math.2021266.
  • [14] F. Ghanim, H. F. Al-Janaby, and O. Bazighifan, Some new extensions on fractional differential and integral properties for Mittag-Leffler confluent hypergeometric function, Fractal Fract. 5 (2021), 143.
  • [15] F. Ghanim, S. Bendak, and A. Al Hawarneh, Certain implementations in fractional calculus operators involving Mittag-Leffler-confluent hypergeometric functions, Proc. R. Soc. A 478 (2022), 20210839.
  • [16] M. O. Oluwayemi, K. Vijaya, and A. Cătaş, Certain properties of a class of functions defined by means of a generalized differential operator, Mathematics 10 (2022), 174, DOI: https://doi.org/10.3390/math10020174.
  • [17] A. Cătaş, R. Şendruţiu, and L. F. Iambor, Certain subclass of harmonic multivalent functions defined by derivative operator, J. Comput. Anal. Appl. 29 (2021), 775–785.
  • [18] W. G. Atshan, I. A. R. Rahman, and A. AlbLupaş, Some results of new subclasses for bi-univalent functions using quasi-subordination, Symmetry 13 (2021), 1653, DOI: https://doi.org/10.3390/sym13091653.
  • [19] Á. O. Páll-Szabó and G. I. Oros, Coefficient related studies for new classes of bi-univalent functions, Mathematics 8 (2020), 110‘, DOI: https://doi.org/10.3390/math8071110.
  • [20] S. Owa and H. Ö. Güney, New applications of the Bernardi integral operator, Mathematics 8 (2020), 1180, DOI: https://doi.org/10.3390/math8071180.
  • [21] S. G. Sălăgean and Á. O. Páll-Szabó, On a certain class of harmonic functions and the generalized Bernardi-Libera-Livingston integral operator, Stud. Univ. Babeş-Bolyai Math. 65 (2020), no. 3, 365–371, DOI: https://doi.org/10.24193/subbmath.2020.3.05.
  • [22] R. W. Ibrahim and D. Baleanu, On a combination of fractional differential and integral operators associated with a class of normalized functions, AIMS Math. 6 (2021), no. 4, 4211–4226, DOI: https://doi.org/10.3934/math.2021249.
  • [23] A. AlbLupaş, New applications of fractional integral for introducing subclasses of analytic functions, Symmetry 14 (2022), 419, DOI: https://doi.org/10.3390/sym14020419.
  • [24] S. Rashid, A. Khalid, O. Bazighifan, and G. I. Oros, New modifications of integral inequalities via γ-convexity pertaining to fractional calculus and their applications, Mathematics 9 (2021), 1753.
  • [25] S. K. Sahoo, M. Tariq, H. Ahmad, B. Kodamasingh, A. A. Shaikh, T. Botmart, et al., Some novel fractional integral inequalities over a new class of generalized convex function, Fractal Fract. 6 (2022), 42.
  • [26] G. I. Oros and L. I. Cotîrlă, Coefficient estimates and the Fekete-Szegö problem for new classes of m-fold symmetric bi-univalent functions, Mathematics 10 (2022), 129.
  • [27] V. D. Breaz, A. Cătaş, and L. Cotîrlă, On the upper bound of the third Hankel determinant for certain class of analytic functions related with exponential function, An. Şt. Univ. Ovidius Constanţa 30 (2022), 75–89.
  • [28] I. A. R. Rahman, W. G. Atshan, and G. I. Oros, New concept on fourth Hankel determinant of a certain subclass of analytic functions, Afr. Mat. 33 (2022), 7.
  • [29] A. Cătaş, On certain class of p-valent functions defined by a new multiplier transformations, In: Proceedings Book of the International Symposium GFTA; Istanbul Kultur University, Istanbul, Turkey, 2007, pp. 241–250.
  • [30] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109–115.
  • [31] A. AlbLupaş, About some differential sandwich theorems using a multiplier transformation and Ruscheweyh derivative, J. Comput. Anal. Appl., 21 (2016), no. 7, 1218–1224.
  • [32] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Taylor & Francis, London, 2002. Orig. ed. in Russian: Minsk; Nauka i Tekhnika; 1987.
  • [33] A. AlbLupaş and G. I. Oros, Fractional integral of a confluent hypergeometric function applied to defining a new class of analytic functions, Symmetry, 14 (2022), 427, DOI: https://doi.org/10.3390/sym14020427.
  • [34] A. AlbLupaş, Inequalities for analytic functions defined by a fractional integral operator, In: G. Anastassiou and J. Rassias, (Eds.), Frontiers in Functional Equations and Analytic Inequalities, Springer, Berlin/Heidelberg, Germany, 2020. pp. 731–745.
  • [35] M. K. Aouf and A. O. Mostafa, Subordination results for analytic functions associated with fractional q-calculus operators with complex order, Afr. Mat. 31 (2020), 1387–1396, DOI: https://doi.org/10.1007/s13370-020-00803-3.
  • [36] H. Zhou, K. A. Selvakumaran, S. Sivasubramanian, S. D. Purohit, and H. Tang, Subordination problems for a new class of Bazilevič functions associated with k -symmetric points and fractional q-calculus operators, AIMS Math. 6 (2021), 8642–8653.
  • [37] A. AlbLupaş and G. Oros, Sandwich-type results regarding Riemann-Liouville fractional integral of q-hypergeometric function, Demonstr. Math. 56 (2023), no. 1, 20220186, DOI: https://doi.org/10.1515/dema-2022-0186.
  • [38] A. Alb Lupaş, Fuzzy differential sandwich theorems involving fractional integral of confluent hypergeometric function, Symmetry 13 (2021), 1992, DOI: https://doi.org/10.3390/sym13111992.
  • [39] G. I. Oros, G. Oros, and S. Owa, Subordination properties of certain operators concerning fractional integral and Libera integral operator, Fractal Fract. 7 (2023), 42, DOI: https://doi.org/10.3390/fractalfract7010042.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-deb27bbd-4480-454c-8400-d2b7c0959dd6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.