PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative study of copper sulfide hydrophobic textile treatment: hierarchical structures versus nanostructures

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study compares membranes coated with hierarchical structures and copper sulfide nanostructures for water and oil separation. Copper was synthesized by a REDOX reaction, followed by sulfidation by a solid vapor method to produce copper sulfide hierarchical structures. A high-energy mechanical milling process was then applied to obtain copper sulfide nanostructures. Both types of copper sulfide structures were applied to cotton textiles by a dip coating method with varying copper sulfide concentrations (1–4%). The morphology of copper sulfide was characterized by scanning electron microscopy before and after milling, and the coated membranes were also analyzed to confirm the presence of polydimethylsiloxane (PDMS) and copper sulfide. Fourier transform infrared spectroscopy analysis confirmed the presence of PDMS and copper sulfide through their characteristic functional groups, while X-ray diffraction analysis confirmed the formation of the anilite phase. Membranes with hierarchical copper sulfide structures and copper sulfide nanostructures showed high hydrophobicity and stability through multiple filtration cycles. Contact angle measurements showed that copper sulfide nanostructure coatings provided a higher degree of hydrophobicity, achieving superhydrophobic angles of 155–165°, depending on the concentration. In contrast, membranes with hierarchical structures exhibited slightly lower hydrophobicity, with contact angles ranging from 146° to 154°. Filtration tests further supported these findings: membranes with copper sulfide nanostructures retained 96% efficiency even after ten cycles, while those with hierarchical structures dropped to 87%, underscoring the superior durability and performance of copper sulfide nanostructured membranes for separation applications.
Wydawca
Rocznik
Strony
133--148
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Physics and Mathematics Department, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Juarez Chihuahua, Mexico
  • Physics and Mathematics Department, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Juarez Chihuahua, Mexico
  • Physics and Mathematics Department, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Juarez Chihuahua, Mexico
  • Physics and Mathematics Department, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Juarez Chihuahua, Mexico
  • Department of Industrial and Manufacturing Engineering, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Juarez Chihuahua, Mexico
  • Physics and Mathematics Department, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Juarez Chihuahua, Mexico
Bibliografia
  • [1] Hou, C, Cao, C., Superhydrophobic cotton fabric membrane prepared by fluoropolymers and modified nano-SiO2 used for oil/water separation, RSC Adv., 2021, 11(50): 31675–31687. doi:10.1039/d1ra06393f
  • [2] He, C., Liu, Z., Wu, J., Pan, X., Fang, Z., Li, J., et al., Future global urban water scarcity and potential solutions, Nat. Commun., 2021, 12(1): 4667. doi:10.1038/s41467-021-25026-3
  • [3] Dmitrieva, E.S., Anokhina, T.S., Novitsky, E.G., Volkov, V.V., Volkov, A.V., Borisov, I.L., Polymeric membranes for oil-water separation: a review, Polymers, 2022, 14(5): 980. doi:10.3390/polym14050980
  • [4] Huang, J., Ran, X., Sun, L., Bi, H., Wu, X., Recent advances in membrane technologies applied in oil–water separation. Discov. Nano, 2024, 19(1): 66. doi:10.1186/s11671-024-04012w
  • [5] Rasouli, S., Rezaei, N., Hamedi, H., Zendehboudi, S., Duan, X., Superhydrophobic and superoleophilic membranes for oil-water separation application: A comprehensive review, Mater. Des., 2021, 204: 109599. doi:10.1016/j.matdes.2021.109599
  • [6] Ali, N., Bilal, M., Khan, A., Ali, F., Iqbal, H.M.N., Design, engineering and analytical perspectives of membrane materials with smart surfaces for efficient oil/water separation, TrAC. – Trends Anal. Chem., 2020, 127: 115902. doi:10.1016/j.trac.2020.115902
  • [7] Arul, S.J., Basavaraj, N.M., SP, J., Influence of bio fillers on the characteristics of Luffa acutangula fiber reinforced polymer composites and parametric optimization using Taguchi technique, Sci. Rep., 2024, 14(1): 30730. doi:10.1038/s41598-02480316-2
  • [8] Meng, X., Song, C., Yan, J., Dong, Y., Hou, A., Xie, K., et al., A review of research on materials for the separation of oil/water mixtures, Nat. Environ. Pollut. Technol., 2023, 22(2): 1047–1062. doi:10.46488/NEPT.2023.v22i02.053
  • [9] Neinhuis, C., Barthlott, W., Characterization and distribution of water-repellent, selfcleaning plant surfaces, Ann. Bot., 1997, 79(6): 667–677 Search in Google Scholar
  • [10] Shibuichi, S., Onda, T., Satoh, N., Tsujii, K., Super water-repellent surfaces resulting from fractal structure, J. Phys. Chem., 1996, 100(50): 19512–19517 Search in Google Scholar
  • [11] Cabrera, J.N., Ruiz, M.M., Fascio, M., D’Accorso, N., Minchev, R., Dubois, P., et al., Increased surface roughness in polydimethylsiloxane films by physical and chemical methods, Polymers, 2017, 9(8): 331. doi:10.3390/polym9080331
  • [12] Sorour, D.M., Ashour, E.A., Shalaby, M., Recent advanced techniques in oil/water treatment, J. Adv. Eng. Trends, 2024, 43(1): 383–393. http://jaet.journals.ekb.eg
  • [13] Liu, T., Tang, Q., Lu, T., Zhu, C., Li, S., Zhou, C., et al., Metal-organic frameworks-based membranes with special wettability for oil-water separation: a review, Coatings, 2023, 13: 1241. doi:10.3390/coatings
  • [14] Tahzibi, H., Azizian, S., Fabrication of superhydrophobic-icephobic carbon cloth using polydimethylsiloxane for oil–water separation, J. Mol. Liq., 2022, 356: 119008. doi:10.1016/j.molliq.2022.119008
  • [15] Zheng, G., Cui, Y., Jiang, Z., Zhou, M., Yu, Y., Wang, P., et al., Superhydrophobic, photothermal, and UV-resistant coatings obtained by polydimethylsiloxane treating self-healing hydrophobic chitosan-tannic acid surface for oil/water separation, Chem. Eng. J., 2023, 473: 145258. doi:10.1016/j.cej.2023.145258
  • [16] Abu Bakar, N.H., Wan Ismail, W.N., Mohd Yusop, H., Mohd Zulkifli, N.F., Synthesis of a waterbased TEOS-PDMS sol-gel coating for hydrophobic cotton and polyester fabrics, N. J. Chem., 2023, 48(2): 933–950. doi:10.1039/d3nj03206j
  • [17] Xu, L., Zhang, X., Shen, Y., Ding, Y., Wang, L., Sheng, Y., Durable superhydrophobic cotton textiles with ultraviolet-blocking property and photocatalysis based on flower-like copper sulfide, Ind. Eng. Chem. Res., 2018, 57(19): 6714–6725. doi:10.1021/acs.iecr.8b00254
  • [18] Cao, C., Wang, F., Lu, M., Preparation of superhydrophobic CuS cotton fabric with photocatalytic and antibacterial activity for oil/water separation, Mater. Lett., 2020, 260: 126956. doi:10.1016/j.matlet.2019.126956
  • [19] Khosravi, M., Azizian, S., Boukherroub, R., Efficient oil/water separation by superhydrophobic CuxS coated on copper mesh, Sep. Purif. Technol., 2019, 215: 573–581. doi:10.1016/j.seppur.2019.01.039
  • [20] Lin, H., Hu, Q., Liao, T., Zhang, X., Yang, W., Cai, S., Highly hydrophobic cotton fabrics modified by poly(methylhydrogen)siloxane and fluorinated olefin: Characterization and applications, Polymers, 2020, 12(4): 833. doi:10.3390/polym12040833
  • [21] Xu, L., Liu, Y., Yuan, X., Wan, J., Wang, L., Pan, H, et al., One-pot preparation of robust, ultraviolet-proof superhydrophobic cotton fabrics for self-cleaning and oil/water separation, Cellulose, 2020, 27(15): 9005–9026. doi:10.1007/s10570-02003369-2
  • [22] Zhao, W., Xiao, X., Pan, G., Ye, Z., Fabrication of Cu species functionalized cotton fabric with oil/water separating reusability by in-situ reduction process, Surf. Coat. Technol., 2020, 385: 125405. doi:10.1016/j.surfcoat.2020.125405
  • [23] Zheng, G., Jiang, Z., Cui, Y., Zhou, M., Yu, Y., Wang, P., et al., Photothermal, superhydrophobic, conductive, and anti-UV cotton fabric loaded with polydimethylsiloxane-encapsulated copper sulfide nanoflowers, Int. J. Biol. Macromol., 2024, 265: 130650. doi:10.1016/j.ijbiomac.2024.130650
  • [24] Hu, H., Wang, J., Deng, C., Niu, C., Le, H., Microwave-assisted controllable synthesis of hierarchical CuS nanospheres displaying fast and efficient photocatalytic activities, J. Mater. Sci., 2018, 53(20): 14250–14261. doi:10.1007/s10853-018-2669-6
  • [25] Yuan, J., Cui, C., Qi, B., Wei, J., Qaisrani, M.A., Study on oil-water separation of selectivewettability meshes with different Micro/Nano structures, Colloids Surf. A: Physicochem. Eng. Asp., 2020, 584: 124026. doi:10.1016/j.colsurfa.2019.124026
  • [26] Achimovičová, M., Dutková, E., Tóthová, E., Bujňáková, Z., Briančin, J., Kitazono, S., Structural and optical properties of nanostructured copper sulfide semiconductor synthesized in an industrial mill, Front. Chem. Sci. Eng., 2019, 13(1): 164–170. doi:10.1007/s11705-018-1755-2
  • [27] Olivas-Armendariz, I., Rodriguez, C., Síntesis, D.E. Nanoestructuras 2D Y 3D De Sulfuro De Plata Y Cobre a Través De La Reacción Sólido-Vapor, 2017. https://www.researchgate.net/publication/320310572
  • [28] Ingle, A.P., Duran, N., Rai, M., Bioactivity, mechanism of action, and cytotoxicity of copperbased nanoparticles: A review, Appl. Microbiol. Biotechnol., 2014, 98: 1001–1009. doi:10.1007/s00253-013-5422-8
  • [29] Midander, K., Cronholm, P., Karlsson, H.L., Elihn, K., Möller, L., Leygraf, C., et al., Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(ll) oxide particles: A cross-disciplinary study, Small, 2009, 5(3): 389–399. doi:10.1002/smll.200801220
  • [30] Egbuna, C., Parmar, V.K., Jeevanandam, J., Ezzat, S.M., Patrick-Iwuanyanwu, K.C., Adetunji, C.O., et al., Toxicity of nanoparticles in biomedical application: nanotoxicology, J. Toxicol., 2021, 2021(1): 9954443. doi:10.1155/2021/9954443
  • [31] Ramos-Zúñiga, J., Bruna, N., Pérez-Donoso, J.M., Toxicity mechanisms of copper nanoparticles and copper surfaces on bacterial cells and viruses, Int. J. Mol. Sci., 2023, 24(13): 10503. doi:10.3390/ijms241310503
  • [32] Wongrakpanich, A, Mudunkotuwa, IA, Geary, SM, Morris, AS, Mapuskar, KA, Spitz, DR, et al., Size-dependent cytotoxicity of copper oxide nanoparticles in lung epithelial cells, Environ. Sci.: Nano, 2016, 3(2): 365–374 Search in Google Scholar
  • [33] Holder, C.F., Schaak, R.E., Tutorial on powder X-ray diffraction for characterizing nanoscale materials, ACS Nano, 2019, 13(7): 7359–7365. doi:10.1021/acsnano.9b05157
  • [34] Zhu, T., Li, S., Huang, J., Mihailiasa, M., Lai, Y., Rational design of multi-layered superhydrophobic coating on cotton fabrics for UV shielding, self-cleaning and oil-water separation, Mater. Des., 2017, 134: 342–351. doi:10.1016/j.matdes.2017.08.071
  • [35] Singh A.K., Polydimethylsiloxane based sustainable hydrophobic/oleophilic coatings for oil/water separation: A review, Clean. Mater., 2022, 6: 100136. doi:10.1016/j.clema.2022.100136
  • [36] Boo, C., Lee, J., Elimelech, M., Engineering surface energy and nanostructure of microporous films for expanded membrane distillation applications, Environ. Sci. Technol., 2016, 50(15): 8112–8119. doi:10.1021/acs.est.6b02316
  • [37] Huang, S., Ras, R.H.A., Tian, X., Antifouling membranes for oily wastewater treatment: Interplay between wetting and membrane fouling, Curr. Opin. Colloid Interface Sci., 2018, 36: 90–109. doi:10.1016/j.cocis.2018.02.002
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-deb15b2e-0467-431c-b1dd-1b0f9a6e57e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.