PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigating the effect of an inclined magnetic field on heat and mass transmission in turbulent squeeze flow of UCM fluid between parallel plates

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates the effects of an inclined magnetic field on heat and mass transfer in turbulent squeeze flow of a visco-elastic fluid with an upper-convected Maxwell model. Squeezing flow is an important phenomenon in various industrial and mechanical processes related to flows between parallel surfaces. Mathematical modelling for the law of conservation of mass, momentum, heat and concentration of nanoparticles is executed. The study employs a system of partial differential equations to describe the flow issue. Governing nonlinear partial equations are reduced into nonlinear ordinary differential equations. The modelled equations are then solved numerically by utilizing the efficient Adams-Moulton method of the fourth order based on the shooting technique using the Fortran programming language. Numerical results are compared with another numerical approach and an excellent agreement is observed. The effects of various factors on the non-dimensional velocity, temperature, and concentration patterns are presented using graphs, while tables are used to assess the numerical values of the skin friction, Nusselt and Sherwood numbers. It is found that the temperature profile decreases as the compression parameter increases but increases with an increase in the Eckert number. The results of this study could be useful in designing heat and mass transfer equipment for applications in viscoelastic fluid flows under an inclined magnetic field.
Rocznik
Strony
169--178
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
  • Department of Humanities and Science (Mathematics), Viganana Bharathi Institute of Technology, Hyderabad-501301, Telangana, India
  • Department of Mathematics, GITAM University, Hyderabad-502329, Telangana, India
  • Department of Humanities and Sciences (Mathematics), CVR College of Engineering, Hyderabad-501510, Telangana, India
  • Department of Mathematics, St. Ann’s College for Women, Hyderabad, Telangana, India
Bibliografia
  • [1] Duwairi, H., Tashtoush, B., & Damseh, R.A. (2004). On heat transfer effects of a viscous fluid squeezed and extruded between two parallel plates. Heat and Mass Transfer, 41(2), 112−117. doi: 10.1007/s00231-004-0525-5
  • [2] Hsiao, K.-L. (2017). Combined electrical MHD heat transfer thermal extrusion system using Maxwell fluid with radiative and viscous dissipation effects. Applied Thermal Engineering, 112, 1281−1288. doi: 10.1016/j.applthermaleng.2016.08.208
  • [3] Ahmadi, A.R., Zahmatkesh, A., Hatami, M., & Ganji, D.D. (2014). A comprehensive analysis of the flow and heat transfer for a nanofluid over an unsteady stretching at plate. Powder Tech-nology, 258, 125−133. doi: 10.1016/j.powtec.2014.03.021
  • [4] Afify, A.A. (2004). MHD free convective flow and mass transfer over a stretching sheet with chemical reaction. Heat and Mass Transfer, 40(6−7), 495−500. doi: 10.1007/s00231-003-0486-0
  • [5] Bhatta, D.P., Mishra, S.R., & Dash, J.K. (2019). Unsteady squeezing flow of water-based nanofluid between two parallel disks with slip effects: Analytical approach. Heat Transfer Asian Research, 48(5), 1575−1594. doi: 10.1002/htj.21447
  • [6] Adesanya, S.O., Ogunseye, H.A., & Jangili, S. (2018). Unsteady squeezing flow of a radiative Eyring Powell fluid channel flow with chemical reactions. International Journal of Thermal Sci-ences, 125, 440−447. doi: 10.1016/j.ijthermalsci.2017.12.013
  • [7] Farooq, M., Ahmad, S., Javed, M., & Anjum, A. (2019). Melting heat transfer in squeezed nanofluid flow through Darcy Forchhei-mer medium. Journal of Heat Transfer, 141, 012402. doi: 10.1115/1.4041497
  • [8] Hayat, T., Nawaz, M., Hendi, A.A. & Asghar, S. (2011). MHD squeezing flow of a micropolar fluid between parallel disks. Jour-nal of Fluids Engineering, 133(11), 111206. doi: 10.1115/1. 4005197
  • [9] Mahmood, M., Asghar, S., & Hossain, M.A. (2007). Squeezed flow and heat transfer over a porous surface for viscous fluid. Heat and Mass Transfer, 44(2), 165−173. doi: 10.1007/s00231-006-0218-3
  • [10] Mohyud-Din, S.T., Khan, S.I., Khan, U., Ahmed, N., & Xiao-Jun, Y. (2018). Squeezing flow of MHD fluid between parallel disks. International Journal for Computational Methods in Engineering Science and Mechanics, 19(1), 42−47. doi: 10.1080/15502287
  • [11] Ojjela, O., Ramesh, K., & Das, S.K. (2018). Second law analysis of MHD squeezing flow of Casson fluid between two parallel disks. International Journal of Chemical Reactor Engineering, 16(6). doi: 10.1515/ijcre-2017-0163
  • [12] Sheikholeslami, M., Ganji, D., & Ashorynejad, H.(2013). Inves-tigation of squeezing unsteady nanofluid flow using ADM. Pow-der Technology, 239, 259−265. doi: 10.1016/j.powtec.2013.02. 006
  • [13] Gholinia, M., Hosseinzadeh, K., Mehrzadi, H. Ganji, D., & Ranjbar, A. (2019). Investigation of MHD Eyring Powell fluid flow over a rotating disk under effect of homogeneous-heteroge-neous reactions. Case Studies in Thermal Engineering, 13, 100356. doi: 10.1016/j.csite.2018.11.007
  • [14] Hayat, T., Yousaf, A., Mustafa, M., & Obaidat, S. (2012). MHD squeezing flow of second-grade fluid between two parallel disks. International Journal for Numerical Methods in Fluids, 69(2), 399−410. doi: 10.1002/fld.2565
  • [15] Jha, B.K. & Aina, B. (2018). Magnetohydrodynamic natural con-vection flow in a vertical micro-porous channel in the presence of induced magnetic field. Communications in Nonlinear Science and Numerical Simulation, 64, 14−34. doi: 10.1016/j.cnsns.2018. 04.004
  • [16] Khan, U., Ahmed, N., & Mohyud-Din, S.T. (2018). Analysis of magnetohydrodynamic flow and heat transfer of Cu-water nanofluid between parallel plates for different shapes of nanopar-ticles. Neural Computing and Applications, 29(1), 695−703 doi: 10.1007/s00521-016-2596-x
  • [17] Mabood, F., Shateyi, S., Rashidi, M., Momoniat, E., &. Frei-doonimehr, N. (2016). MHD stagnation point flow heat and mass transfer of nanofluids in porous medium with radiation, viscous dissipation and chemical reaction. Advanced Powder Technol-ogy, 27(2), 742−749. doi: 10.1016/j.apt.2016.02.033
  • [18] Siddiqui, A.M., Irum, S., & Ansari, A.R. (2008). Unsteady squeezing flow of a viscous MHD fluid between parallel plates, a solution using the homotopy perturbation method. Mathemati-cal Modelling and Analysis, 13(4), 565–576. doi: 10.3846/1392-6292.2008.13.565-576
  • [19] Abbasi, M., Khaki, M., Rahbari, A., Ganji, D., & Rahimipetroudi, I. (2016). Analysis of MHD flow characteristics of a UCM visco-elastic flow in a permeable channel under slip conditions. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38(3), 977−988. doi: 10.1007/s40430-015-0325-5
  • [20] Choi, J., Rusak, Z., & Tichy, J. (1999). Maxwell fluid suction flow in a channel. Journal of Non-Newtonian Fluid Mechanics, 85(2−3), 165−187. doi: 10.1016/S0377-0257(98)00197-9
  • [21] Hayat, T., & Abbas, A. (2008). Channel flow of a Maxwell fluid with chemical reaction. Zeitschrift four angewandte Mathematik und Physik, 59(1), 124−144. doi: 10.1007/s00033-007-6067-1
  • [22] Mukhopadhyay, S., & Vajravelu, K. (2012). Effects of transpira-tion and internal heat generation/absorption on the unsteady flow of a Maxwell fluid at a stretching surface. Journal of Applied Me-chanics, 79(4), 044508. doi: 10.1115/1.4006260
  • [23] Prasad, A., Sujatha, A., Vajravelu, K., & Pop, I. (2012). MHD flow and heat transfer of a UCM fluid over a stretching surface with variable thermophysical properties. Meccanica, 47(6), 1425−1439. doi: 10.1007/s11012-011-9526-x
  • [24] Sadeghy, K., Najafi, A.H., & Saffaripour, M. (2005). Sakiadis flow of an upper-convected Maxwell fluid. International Journal of Non-Linear Mechanics, 40(9), 1220−1228. doi: 10.1016/j. ijnonlinmec.2005.05.006
  • [25] Hayat, T., Qasim, M., & Abbas, Z. (2010). Radiation and mass transfer effects on magnetohydrodynamic unsteady flow induced by a shrinking sheet. Z Naturforsch, 65(3), 231–239. doi: 10.1515/zna-2010-0312
  • [26] Abbas, I.A. (2007). Finite element analysis of the thermoelastic interactions in an unbounded body with a cavity. Forschung Im Ingenieurwesen, 71, 215–222. doi: 10.1007/s10010-007-0060-x
  • [27] Alzahrani, F., Hobiny, A., Abbas, I., & Marin, M. (2020). An Ei-genvalues Approach for a Two-Dimensional Porous Medium Based Upon Weak, Normal and Strong Thermal Conductivities. Symmetry, 12(5), 848. doi: 10.3390/sym12050848
  • [28] Abbas I.A., & Kumar, R. (2016). 2D deformation in initially stressed thermoelastic half-space with voids. Steel and Composite Structures, 20(5), 1103−1117. doi: 10.12989/scs.2016.20.5.1103
  • [29] Zenkour, A., & Abbas, I.A. (2014). Nonlinear Transient Thermal Stress Analysis of Temperature-Dependent Hollow Cylinders Using a Finite Element Model. International Journal of Struc-tural Stability and Dynamics, 14(6), 1450025. doi: 10.1142/ S0219455414500254
  • [30] Abbas, I., Hobiny, A., & Marin M. (2020). Photo-thermal inter-actions in a semi-conductor material with cylindrical cavities and variable thermal conductivity. Journal of Taibah University for Science, 14(1), 1369−1376. doi: 10.1080/16583655.2020. 1824465
  • [31] Marin, M., Hobiny, A., & Abbas, I. (2021). The Effects of Frac-tional Time Derivatives in Por thermoelastic Materials Using Fi-nite Element Method. Mathematics, 9(14), 1606. doi: 10.3390/ math9141606
  • [32] Narender, G., Govardhan, K., & Sreedhar Sarma, G. (2020). Magnetohydrodynamic stagnation point on a Casson nanofluid flow over a radially stretching sheet. Beilstein Journal of Nano-technology, 11, 1303–1315. doi: 10.3762/bjnano.11.114
  • [33] Narender, G., Govardhan, K., & Sreedhar Sarma, G. (2021). MHD Casson Nanofluid Past a Stretching Sheet with the Effects of Viscous Dissipation. Chemical Reaction and Heat Source/ Sink. Journal of Applied Computational Mechanics, 7(4): 2040–2048. doi: 10.22055/JACM.2019.14804
  • [34] Zeeshan, A., Ahmad, M., Ellahi, R., Sait, S.M., & Shehzad, N. (2023). Hydromagnetic flow of two immiscible nanofluids under the combined effects of Ohmic and viscous dissipation between two parallel moving plates. Journal of Magnetism and Magnetic Materials, 575(1), 170741. doi: 10.1016/j.jmmm.2023.170741
  • [35] Elgazery, N.S., Elelamy, A.F., Bobescu, E., & Ellahi, R. (2021). How do artificial bacteria behave in magnetized nanofluid with variable thermal conductivity: application of tumor reduction and cancer cells destruction. International Journal of Numerical Methods for Heat and Fluid Flow, 32(9), 2982−3006. doi: 10.1108/HFF-11-2021-0722
  • [36] Bhatti, M.M., Marin, M., Ellahi, R., & Fudulu, I.M. (2023). In-sight into the dynamics of EMHD hybrid nanofluid (ZnO/CuO-SA) flow through a pipe for geothermal energy applications. Journal of Thermal Analysis and Calorimetry, 24, 14261–14273. doi: 10.1007/s10973-023-12565-8
  • [37] Mustafa, M., Hayat, T., & Obaidat, S. (2012). On heat and mass transfer in the unsteady squeezing flow between parallel plates. Meccanica, 47(7), 1581−1589. doi: 10.1007/s11012-012-9536-3
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-deaa5db0-e274-48bb-8178-f1a9ca15b291
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.