PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

DC power supply with parallel active compensation function and tuneable inductive filter based on analogue control: Part 1

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a DC power supply is presented that, in addition to a power factor correction, is equipped with an active power filter function. This function enables compensation of both the reactive and the distortion power, generated by an external load, which is connected to the same power line node as the presented device. A tuneable inductive filter is added at the input of the power electronics controlled current source, which constitutes the main block of the power supply. This filter allows for a visible improvement in the quality of the current source control, compared to a similar device with a fixed inductive filter. This improvement depends on extending the “frequency response” of the current source, which facilitates an increase in the dynamics of changes in the input current of the power supply. The actual modification to the presented device is related to its control section, which is equipped with analogue regulators. The main purpose of this work is to present the results from a simulation model of an electrical system with a power supply, especially compared to those from a similar device but with a discrete control. The work represents a continuation of a research cycle on DC power supplies that are equipped with a power compensation function and are based on tuneable magnetic devices.
Rocznik
Strony
art. no. e148839
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Poznan University of Technology, Faculty of Control, Robotics and Electrical Engineering, Piotrowo 3A, 60-965 Poznan, Poland
  • Poznan University of Technology, Faculty of Control, Robotics and Electrical Engineering, Piotrowo 3A, 60-965 Poznan, Poland
Bibliografia
  • [1] M. Gwóźdź, Ł. Ciepliński, and M. Krystkowiak, “Power supply with parallel reactive and distortion power compensation and tunable inductive filter – Part 1,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 3, pp. 401–408, 2020, doi: 10.24425/bpasts.2020.133383.
  • [2] M. Gwóźdź, R. Wojciechowski, and Ł. Ciepliński “Power supply with parallel reactive and distortion power compensation and tunable inductive filter – Part 2,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 4, 2021, doi: 10.24425/bpasts.2021.137938.
  • [3] G. Benysek and M. Pasko, Power Theories for Improved Power Quality, Springer-Verlag, London, 2012.
  • [4] H. Akagi, E.H. Watanabe, and Aredes M., Instantaneous Power Theory and Applications to Power Conditioning, John Wiley & Sons: 408 Hoboken, NJ, USA, 2017; ISBN: 9781118362105.
  • [5] M. Pasko, D. Buła, K. Dębowski, D. Grabowski, and M. Maciążek, “Selected methods for improving operating conditions of three-phase systems working in the presence of current and voltage deformation – Part I,” Arch. Electr. Eng., vol. 67, pp. 591–602, 2018.
  • [6] X. Qiao, J. Bian, C. Chen, and H. Li, “Comparison and analysis of reactive power compensation strategy in power system,” Proceedings of the 2019 IEEE Sustainable Power and Energy Conference (iSPEC), Beijing, China, 2019, pp. 689–692, doi: 10.1109/iSPEC48194.2019.8975301.
  • [7] L. Czarnecki and M. Almousa, “Adaptive balancing by reactive compensators of three-phase linear loads supplied by non-sinusoidal voltage from four-wire lines,” Am. J. Electr. Power Energy Syst., vol. 10, pp. 32–42, 2021, doi: 10.11648/j.epes.20211003.11.
  • [8] H. Akagi, A. Nabae, and S. Atoh, “Control Strategy of Active Power Filters Using Multiple vol.tage – Source PWM Converters,” IEEE Trans. Ind. Appl., vol. 22, no. 3, pp. 361–368, 1977.
  • [9] A. Teke, M. Meral, and M. Tumay, “Active Power Filter: Review of Converter Topologies and Control Strategies,” Gazi University Journal of Science, vol. 24, no. 2, pp. 283–289, 05.04.2011.
  • [10] T. Adrikowski, D. Buła, and M. Pasko, “Selection of method for reactive power compensation and harmonic filtering in industrial plant,” 2017 Progress in Applied Electrical Engineering (PAEE), 2017, pp. 1–5, doi: 10.1109/PAEE.2017.8009010.
  • [11] L. Czarnecki, “Currents’ physical components (CPC) – based power theory a review. Part I: power properties of electrical circuits and systems,” Przegląd Elektrotechniczny, vol. 95, no. 10, pp. 1–11, 2019.
  • [12] M. Gwóźdź, “Power electronics active shunt filter with controlled dynamics,” Compel-Int. J. Comp. Math. Electr. Electron. Eng., vol. 32, no. 4, pp. 1337–1344, 2013.
  • [13] “Power Management,” Analog Devices Inc., [Online]. Available: https://www.analog.com/en/product-category/power-management.html [Access: 01.09.2023].
  • [14] “Power Management,” Texas Instruments Inc., [Online]. Available: https://www.ti.com/power-management/overview.html [Access: 01.09.2023].
  • [15] S. Fryze, “Active, reactive, and apparent power in circuits with nonsinusoidal voltage and current,” Przegląd Elektrotechniczny, vol. 13, pp. 193–203, 1931.
  • [16] M.P. Kaźmierkowski, R. Krishnan, and F. Blaabjerg, Control in Power Electronics Selected Problems, Academic Press Series in Engineering Book, 2003.
  • [17] M.H. Rashid, Power Electronics Handbook, Elsevier Ltd. Oxford, ISBN: 0-12-581650-2, 2018.
  • [18] S. Bolkowski, Theory of electric circuits, WNT, Warszawa, 2007. (in Polish)
  • [19] J. Bentsman, Introduction to Signal Processing, Instrumentation, and Control, An. Integrative Approach, World Scientific Publishing: Singapore, 2016.
  • [20] S. Stergiopoulos, Advanced Signal. Processing Handbook: Theory and Implementation for Radar, Sonar, and Medical Imaging Real Time Systems, Electrical Engineering & Applied Signal, Processing Series, 1st ed., CRC Press: Boca Raton, FL, USA, 2000.
  • [21] W. Kester, The Data Conversion Handbook, Analog Devices Inc., Newnes, 2005.
  • [22] V.K. Madisetti, The Digital Signal Processing Handbook, vol. 3, Set, CRC Press: Boca Raton, FL, USA, 2010.
  • [23] B. Francis and T. Georgiou, “Stability theory for linear time-invariant plant with periodic digital controllers,” IEEE Trans. Autom. Control, vol. 33, no. 9, pp. 820–832, 1988.
  • [24] L. Mirkin, “Transfer functions of sampled-data systems in the lifted domain,” Proc. 44th IEEE Conf. on Decision and Control & European Control Conf. ECC’05 (Seville, Spain), 2005, pp. 5180–5185.
  • [25] M. Gwóźdź, “Stability of Discrete-Time Systems on Base of Generalized Sampling Expansion,” Proc. XXXIV Conference IC-SPETO 2011, Gliwice-Ustoń, Poland, 2011, pp. 71–72.
  • [26] J. Borkowski, D. Kania, and J. Mroczka, “Influence of A/D quantization in an interpolated DFT based system of power control with a small delay,” Metrol. Meas. Syst., vol. 21, pp. 423–432, 2014.
  • [27] J.C. Doyle, B.A. Francis, and A.R. Tannenbaum, Feedback Control Theory, Dover Publications, 2013.
  • [28] T. Kaczorek, A. Dzieliński, W. Dąbrowski, and R. Łopatka, Fundamentals of control theory, Warszawa, WNT, 2020. (in Polish)
  • [29] “Intelligent Power Modules” Mitsubishi Electric, [Online]. Available: http://www.mitsubishielectric.com/semiconductors/products/powermod/intelligentpmod/index.html [Access: 07.06.2023].
  • [30] “LMG3425R030,” Texas Instruments Inc., [Online]. Available: https://www.ti.com/product/LMG3425R030 [Access: 07.06.2023].
  • [31] W. Jarzyna, “A survey of the synchronization process of synchronous generators and power electronic converters,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, pp. 1069–1083, 2019.
  • [32] M. Gwóźdź and Ł. Ciepliński, “An Algorithm for Calculation and Extraction of the Grid voltage Component,” Energies, vol. 14, no. 16, p. 4842, 2021, doi: 10.3390/en14164842.
  • [33] “Op Amp Subtleties, section XI,” Analog Devices Inc., [Online]. Available: https://www.analog.com/media/en/training-seminars/design-handbooks/Amplifier-Applicatons-Guide/Section11.pdf [Access: 07.06.2023].
  • [34] “Rail-to-Rail Op Amps,” Analog Devices Inc., [Online]. Available: https://www.analog.com/en/product-category/rail-to- rail-op-amps.html [Access: 07.06.2023].
  • [35] “ADA4806-1,” Analog Devices Inc., [Online]. Available: https://www.analog.com/en/products/ada4806-1.html [Access: 07.06.2023].
  • [36] J.M. De la Rosa, “Sigma-Delta Modulators: Tutorial Overview, Design Guide, and State-of-the-Art Survey,” IEEE Trans. Circuits Syst. I-Regul. Pap., vol. 58, no. 1, pp. 1–21, Jan. 2011, doi: 10.1109/TCSI.2010.2097652.
  • [37] M. Gwóźdź, “Power Electronics Programmable vol.tage Source with Reduced Ripple Component of Output Signal Based on Continuous-Time Sigma-Delta Modulator,” Energies, vol. 14, no. 20, p. 6784, 2021, doi: 10.3390/en14206784.
  • [38] M.H.J. Bollen and I.Y.H. Gu, Signal Processing of Power Quality Disturbances, Wiley-IEEE Press: Piscataway, NJ, USA, 2006.
  • [39] IEC Standard, IEC 61000-2-2: Environment-Compatibility Levels for Low-Frequency Conducted Disturbances and Signalling in Public Low-voltage Power Supply Systems, International Electrotechnical Commission (IEC); IEC: Geneva, Switzerland, 2002.
  • [40] A. Arranz-Gimon, A. Zorita-Lamadrid, D. Morinigo-Sotelo, and O. Duque-Perez, “A Review of Total Harmonic Distortion Factors for the Measurement of Harmonic and Interharmonic Pollution in Modern Power Systems,” Energies, vol. 14, p. 6467, 2021, doi: 10.3390/en14206467.
  • [41] D. Matecki and M. Gwóźdź, “Programmable Broad-Band Power Electronics Current Source with GaN Transistors in Power Stage,” Progress in Applied Electrical Engineering (PAEE), Kościelisko, Poland, 2018, pp. 1–5, doi: 10.1109/PAEE.2018.8441156.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dea9fde6-f30d-4c89-91a3-53eb32a3fb9c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.