PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Friction stir lap welding of dissimilar aluminum alloys ‎with copper particles ‎additives

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Friction stir lap welding (FSLW) of dissimilar Aluminum alloys (AA1100 with AA6061) is ‎investigated using a 3 ‎mm sheet’s thick. These alloys are difference in physical characteristics, strength, and melting temperatures, at different tool ‎rotation speeds (560,900 and 1400) rpm and various feed rate (16, 40 and ‎‎125) mm/min, with ‎cylindrical pin geometry having two tilt angle: 0°, 3° was used. Copper particles were added ‎to ‎the weld zone to make composite friction stir welded joints using the best welding ‎conditions. Many tests and ‎inspections were carried out to evaluate the joint quality and the ‎soundness of weldments. The highest value of tensile strength and efficiency at (1400, 40, 3̊) while hardness recorded (97.5HV) at stir zone of FSLW and it go downs along the HAZ and base metals of AA1100 and AA6061.
Rocznik
Strony
33--46
Opis fizyczny
Bibliogr. 33 poz., fot., rys., tab., wykr.
Twórcy
  • Mechanical Techniques Department, UniversityMiddle Technical , Institute of Technology, Baghdad, IRAQ
  • Mechanical Techniques Department, UniversityMiddle Technical , Institute of Technology, Baghdad, IRAQ
  • Mechanical Techniques Department, UniversityMiddle Technical , Institute of Technology, Baghdad, IRAQ
  • Department of Production Engineering and Metallurgy, University of Technology, IRAQ
Bibliografia
  • [1] Ghusoon R.M., Rawaa H.M. and Basim H.A. (2019): Effect of die geometry on thermal fatigue of tool steel inaluminium alloy die-casting.– IOP Conference Series: Materials Science and Engineering, vol.518, No.3,p.032042, https://doi.org/10.1088/1757-899x/518/3/032042.
  • [2] Kumar P.R. and Raj R.G. (2014): A review on friction stir weldment of AA6061 and AA1100 aluminium alloys.– Int.J. Adv. Inf. Sci. Technol, vol.3, pp.104-108.
  • [3] Budak S., Çolak H. and Yakut Y. (2023): Effect of aging time and temperature on microstructure and mechanical properties of AA7075 alloy.– Gümüşhane Üniversitesi Fen Bilimleri Dergisi, vol.13, No.1, pp.23-31,https://doi.org/10.17714/gumusfenbil.1099882.
  • [4] Leon J.S. and Jayakumar V. (2019): An investigation of analytical modelling of friction stir welding.– Int. J. Mech.Prod. Eng. Res. Dev, vol.9, No.1, pp.179-189, https://doi.org/10.24247/ijmperdfeb201918.
  • [5] Mallieswaran K., Padmanabhan R. and Balasubramanian V. (2018): Friction stir welding parameters optimization for tailored welded blank sheets of AA1100 with AA6061 dissimilar alloy using response surface methodology.–Adv. Mats. Proc. Technols., vol.4, No.1, pp.142-157, https://doi.org/10.1080/2374068X.2017.1410690.
  • [6] Yang Z., Wang, Y. Domblesky J. P., Li W. and Han J. (2021): Development of a heat source model for friction stirwelding tools considering probe geometry and tool/workpiece interface conditions.– Int. J. Adv. Manuf. Technol,vol.114, pp.1787-1802, https://doi.org/10.1007/s00170-021-06985-9.
  • [7] Zhang Y.N., Cao X., Larose S. and Wanjara P. (2012): Review of tools for friction stir welding and processing.–Canadian Metallurgical Quarterly, vol.51, No.3, pp.250-261, https://doi.org/10.1179/1879139512Y.0000000015.
  • [8] Sreelakshmi M. and Pany C. (2016): Stress analysis of metallic pressure vessels with circumferential mismatch using finite element method.– Int. J. of Sci. Eng. Res., vol.7, No.4, pp.479-484.
  • [9] Pany C. (2021): Structural analysis of metallic pressure vessels with weld sinkage in the circumferential joint.– J.Sci. Technol. Eng. Res., vol.2, No.1, pp.4-10.
  • [10] Heidarzadeh A., Mironov S., Kaibyshev R., Çam G., Simar A., Gerlich A., Khodabakhshi F., Mostafaei A., Field, D.P., Robson J.D., Deschamps A. and Wither P.J. (2021): Friction stir welding/processing of metals and alloys: Acomprehensive review on microstructural evolution.– Prog. Mats. Sci., vol.117, p.100752,https://doi.org/10.1016/j.pmatsci.2020.100752.
  • [11] Kumar Rajak D., Pagar D.D., Menezes P.L. and Eyvazian A. (2020): Friction-based welding processes: friction welding and friction stir welding.– J. Adh. Sci. Technol, vol.34, No.24, pp.2613-2637,https://doi.org/10.1080/01694243.2020.1780716.
  • [12] Shah P.H. and Badheka V.J. (2019): Friction stir welding of aluminium alloys: An overview of experimental findings – process, variables, development and applications.– Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol.233, No.6, pp.1191-1226,https://doi.org/10.1177/1464420716689.
  • [13] Cederqvist L. and Reynolds A. (2001): Factors affecting the properties of friction stir welded aluminum lap joints. Welding Journal-New York, vol.80, No.12, p.281.
  • [14] Kimapong K. and Watanabe T. (2005): Lap joint of A5083 aluminum alloy and SS400 steel by friction stirwelding.– Mats. Trans., vol.46, No.4, pp.835-841, https://doi.org/10.2320/matertrans.46.835.
  • [15] Liu H., Nakata K., Yamamoto N. and Liao J. (2010): Grain orientation and texture evolution in pure titanium lap joint produced by friction stir welding.– Materials Transactions, vol.51, No.11, pp.2063-2068,https://doi.org/10.2320/matertrans.m2010242.
  • [16] Bisadi H., Tour M. and Tavakoli A. (2011): The influence of process parameters on microstructure and mechanical properties of friction stir welded Al 5083 alloy lap joint.– American Journal of Materials Science, vol.1, No.2, pp.93-97, https://doi.org/10.5923/j.materials.20110102.15.
  • [17] Singh N., Singh R. and Lal H. (2013): Experimental study of friction stir welding of aluminium alloy (A1100 &A6101).– Int. J. Adv. Sci. Technol (IJAST), vol.1, No.1, (December 2013).
  • [18] Abbass M.K. and Raheef K.M. (2018): A study of diffusion phenomenon in friction stir lap welding joints for low carbon steel C10 to aluminum alloy AA1100-H112.– Al-Nahrain Journal for Engineering Sciences, vol.21, No.4,pp.479-485, http://doi.org/10.29194/NJES.21040479.
  • [19] Shaojun Y.G.M.H.L. and Wanqi Q.Y.J. (2012): Microstructures and room temperature mechanical properties of Al-6.3 Zn-2.8 Mg-1.8 Cu casting aluminum alloy.– Acta Metall Sin, vol.48, No.2, pp.211-219,https://doi.org/10.3724/sp.j.1037.2011.00579.
  • [20] Doğan K., Acarer M., Eker Y. and Salur E. (2022): Microstructural and mechanical properties of AA7075 Alalloys produced via mechanical alloying process.– Avrupa Bilim ve Teknoloji Dergisi, vol.35, pp.54-61,https://doi.org/10.31590/ejosat.1041205.
  • [21] Leal R.M. and Loureiro A. (2004): Defects formation in friction stir welding of aluminium alloys.– Mats. Sci. For.,vol.455-456, pp.299-302, https://doi.org/10.4028/www.scientific.net/MSF.455-456.299.
  • [22] Venkit H. and Selvaraj S.K. (2022): Review on latest trends in friction-based additive manufacturing techniques.–Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,vol.236, No.18, pp.10090-10121, https://doi.org/10.1177/09544062221101754.
  • [23] Liu J., Wu B., Wang Z., Li C., Chen G. and Miao Y. (2023): Microstructure and mechanical properties of aluminum-steel dissimilar metal welded using arc and friction stir hybrid welding.– Mats. & Des., vol.225,p.111520, https://doi.org/10.2139/ssrn.4266681.
  • [24] Miah M.H., Chand D.S. and Malhi G.S. (2023): The influence of tool rotational speed on microstructure and mechanical performance of dissimilar FSLW.– Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2023.03.454.
  • [25] Britto A.S.F. and Binoj J.S. (2022): Mechanical properties optimization and microstructures of diffusion bonded AA2014/AA7075 al alloys.– Rev. Meta., vol.58, No.3, e225, https://doi.org/10.3989/revmetalm.225.
  • [26] Gowthaman P. and Saravanan B. (2021): Determination of weldability study on mechanical properties of dissimilar Al-alloys using friction stir welding process.– Materials Today: Proceedings, vol.44, pp.206-212,https://doi.org/10.1016/j.matpr.2020.08.599.
  • [27] Ma H., Qin G., Zhao Q. and Geng P. (2022): Correlation of heterogeneous interface microstructure and mechanical performance of inertia friction welded 6061 Al alloy joint.– J. of Mats. Res. and Technol., vol.17,pp.166-183, https://doi.org/10.1016/j.jmrt.2021.12.120.
  • [28] Sun Y., Tsuji N. and Fujii H. (2016): Microstructure and mechanical properties of dissimilar friction stir welding between ultrafine grained 1050 and 6061-t6 aluminum alloys.– Metals, vol.6, No.10, p.249,https://doi.org/10.3390/met6100249.
  • [29] Chada R. and Kumar N.S. (2022): Micro structural characteristics of dissimilar friction stir welds between AA7475-T7651 and AA6061-T6 aluminium alloys.– AIP Publishing, https://doi.org/10.1063/5.0081791.
  • [30] El-Sayed M.M., Shash A.Y., Abd-Rabou M. and El Sherbiny M.G. (2021): Welding and processing of metallic materials by using friction stir technique: A review.– J. Adv. Join. Procs., vol.3, p.100059,https://doi.org/10.1016/j.jajp.2021.100059.
  • [31] Haghshenas M. and Gerlich A.P. (2018): Joining of automotive sheet materials by friction-based welding methods: A review.– Eng. Sci. Technol., Int. J., vol.21, No.1, pp.130-148, https://doi.org/10.1016/j.jestch.2018.02.008.
  • [32] Cabibbo M., Forcellese A., Santecchia E., Paoletti C., Spigarelli S. and Simoncini M. (2020): New approaches to friction stir welding of aluminum light-alloys.– Metals, vol.10, No.2, p.233, https://doi.org/10.3390/met10020233.
  • [33] Safeen M.W. and Russo Spena P. (2019): Main issues in quality of friction stir welding joints of aluminum alloyand steel sheets.– Metals, vol.9, No.5, p.610, https://doi.org/10.3390/met9050610.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dea8521e-e58d-4096-a973-30fd6bb3edb5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.