PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the cyclic hardening model on the results of the numerical analysis of fatigue life on example of the compressor blade

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main goal of the presented work is to determine the impact of the cyclic hardening model on the numerical results of the ε-N fatigue test. As an object of study, compressor blade (from PZL-10W helicopter engine) was used. The examined blade was made of EI-961 alloy. In numerical analysis, a geometrical model of the blade with a preliminary defect was created. Geometrical defect – V-notch was created on the leading edge. This defect was introduced in order to weaken the structure of the element and the possibility of observing the crack initiation process (in experimental tests). Material data to ε-N analysis, based on Manson-Coffin-Basquin equation, were estimated for Mitchell’s model. This model was built based on strength data provided by the steel producer. Based on three different models of cyclic hardening (Manson, Fatemi, and Xianxin), a number of load cycles were calculated. Load cycle during numerical analysis was represented as resonance bending with an amplitude of displacement equal to A = 1.8 mm. Obtained results were compared with experimental data. Additionally, the analytical model of ε-N fatigue (depending on the cyclic hardening) was prepared. All the work carried out has been summarized by a comprehensive comparative analysis of the results. Obtained results and dependencies can be used in the selection of an appropriate model of cyclic hardening in further fatigue tests of many aerospace elements.
Twórcy
  • Rzeszow University of Technology, Department of Aircraft and Aircraft Engines Powstancow Warszawy 12, 35-959 Rzeszow, Poland tel. +48 17 7432348
  • Lehigh University, Department of Mechanical Engineering and Mechanics 27 Memorial Dr W, Bethlehem, PA 18015, United States
Bibliografia
  • [1] Carter, T. J., Common failures in gas turbine blade, Eng. Failure, 12, pp. 237-247, 2005.
  • [2] Chengzong, L., Zhiyong, Z., Xin, C., Yuanxiao, S., Low-Cycle Fatigue Analysis and Experiment of Steel Specimens with Stress Concentration, Journal of Applied Mechanics, 17 Vol. 3, pp. 107-110, 2000.
  • [3] Ejaz, N., Salam, I., Taugir, A., An air crash due to failure of compressor rotor, Engineering Failure Analysis, 14, pp. 831-840, 2007.
  • [4] Hamrick, J. L., Effects of foreign object damage from small hard particles on the high-cycle fatigue live of T1-6A1-4V, PhD Dissertation, Air Force Institute of Technology, 1999.
  • [5] Ince, A., Glinka, G., A modification of Morrow and Smith-Watson-Topper mean stress correction models, Fatigue & Fracture of Engineering Materials & Structures, 34, pp. 854-867, 2011.
  • [6] Mall, S., Hamrick, J. L., Nicholas, T., High cycle fatigue behavior of Ti-6Al-4V with simulated foreign object damage, Mechanics of Materials, 33, pp. 679-692, 2001.
  • [7] Manson, S. S., Hirschberg, M. H., Fatigue behavior in strain cycling in the low and inter-mediate cycle range, Fatigue – An interdisciplinary Approach, Proceedings of the 10th Sagamore Army Materials Research Conference, pp. 133-173, 1964.
  • [8] Manson, S. S., Fatigue: A Complex Subject – Some Simple Approximation, Experimental Mechanical Journal, 5, pp. 193-226, 1965.
  • [9] Meggiolaro, M. A., Castro, J. T. P., Statistical evaluation of strain-life fatigue crack initiation predictions, International Journal of Fatigue, 26, pp. 463-476, 2004.
  • [10] Nakhodchi, S., Salimpour, M. E., Fatigue life prediction in damaged and un-damaged compressor blades, Engineering Solid Mechanics, 2, pp. 43-50, 2013.
  • [11] Niesłony, A., Kurek, A., Badania kompatybilności pomiędzy modelami Mansona-Coffina-Basquina i Ramberga-Osgooda na podstawie wybranych materiałów konstrukcyjnych, Czasopismo Techniczne: Mechanika, 108, pp. 53-64, 2011.
  • [12] Stephens, R.I., Fatemi, A., Stephens, R. R., Fuchs, H. O., Metal Fatigue in Engineering, John Wiley& Sons, Ottawa, Canada 2000.
  • [13] Visvanatha, S. K., A study of the use of Neuber’s Rule in fatigue crack initiation predictions, Carleton University, Ottawa, Canada 1998.
  • [14] Witek, L., Bednarz, A., Stachowicz, F., Fatigue analysis of compressor blade with preliminary defect, Engineering Failure Analysis, 58, 139, pp. 229-237, 2015.
  • [15] Witek, L., Bednarz, A., Impact of the vibration amplitude on the fatigue life of compressor blades with mechanical defects, Journal of KONES, Vol. 23, pp. 571-576, 2016.
  • [16] Xi, N. S., Zhong, P. D., Huang, H. Q., Yan, H., Tao, C. H., Failure investigation of blade and disk in first stage compressor, Engineering Failure Analysis, 7, pp. 385-392, 2000.
  • [17] Xianxin, C., Peizheng, R., Xuejun, L., Feng, T., Approximate Estimation for Strain Fatigue Parameters, Proceedings of the 6th National Conference on Fatigue, The Chinese Society of Theoretical and Applied Mechanics, pp. 232-235, 1993.
  • [18] Zhang, Z., Qiao, Y., Sun Q., Li, C., Li, J., Theoretical estimation to the cyclic strength coefficient and the cyclic strain-hardening exponent for metallic materials, Preliminary study, Journal of Materials Engineering and Performance, 18, pp. 245-254, 2009.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de9e12de-4347-4609-b107-10600168b815
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.