PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Cancer therapeutics strategy using nano-carrier mediated natural drugs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Nucleolin is a multifactorial protein, having a significant role in chromatin remodelling, mRNA stability, ribosome biogenesis, stemness, angiogenesis, etc., thus, it is potential therapeutic target in cancer. The purpose of this paper is to study porous silicon (pSi) nanocarrier-based natural drug delivery system targeting dysregulated nucleolin expression for cancer therapeutics. Design/methodology/approach: Quercetin was loaded in pre-synthesized and characterized pSi nanoparticles, and release kinetics was studied. The study compared the inhibitory concentration (IC50) of quercetin, synthetic drug doxorubicin, and quercetin-loaded pSi nanoparticles. Further, mRNA expression of a target gene, nucleolin, was tested with a quercetin treated breast cancer cell line (MCF-7). Findings: Quercetin-loaded pSi nanoparticles followed first-order release kinetics. IC50 was determined at concentrations of 312 nM, 160 μM, and 50 μM against doxorubicin, quercetin, and quercetin-loaded pSi nanoparticles, respectively. The results further indicated 16-fold downregulation of nucleolin mRNA expression after 48h of quercetin treatment of exponentially growing MCF-7 cells. Research limitations/implications: Whether pSi nanoparticle loaded quercetin can significantly downregulate nucleolin protein expression and its impact on apoptosis, cell proliferation, and angiogenic pathways need further investigation. Practical implications: The practical application of the proposed nanocarrier-based drug delivery system potentially lays out a path for developing targeted therapy against nucleolin-dysregulated cancer using natural products to minimize the side effects of conventional chemotherapeutic drugs. Originality/value: Inhibition of nucleolin and nucleolin regulated pathways using natural compounds and its targeted delivery with nanocarrier is not yet done.
Rocznik
Strony
32--41
Opis fizyczny
Bibliogr. 43 poz., rys., wykr.
Twórcy
autor
  • Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, UP, India
autor
  • Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida UP, India
autor
  • Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, UP, India
autor
  • Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, UP, India
autor
  • Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida UP, India
autor
  • Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, UP, India
  • Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, UP, India
Bibliografia
  • [1] C. Mattiuzzi, G. Lippi, Current cancer epidemiology, Journal of Epidemiology and Global Health 9/4 (2019) 217-222. DOI: https://dx.doi.org/10.2991/jegh.k.191008.001
  • [2] N. Harbeck, F. Penault-Llorca, J. Cortes, M. Gnant, N. Houssami, P. Poortmans, K. Ruddy, J. Tsang, F. Cardoso, Breast cancer, Nature Reviews Disease Primers 5/1 (2019) 66. DOI: https://doi.org/10.1038/s41572-019-0111-2
  • [3] R. Li, Z. Chen, Z. Dai, Y. Yu, Nanotechnology assisted photo-and sonodynamic therapy for overcoming drug resistance, Cancer Biology and Medicine 18/2 (2021) 388-400. DOI: https://doi.org/10.20892/j.issn.2095-3941.2020.0328
  • [4] A. Pugazhendhi, T.N. Edison, I. Karuppusamy, B. Kathirvel, Inorganic nanoparticles: a potential cancer therapy for human welfare, International Journal of Pharmaceutics 539/1-2 (2018) 104-111. DOI: https://doi.org/10.1016/j.ijpharm.2018.01.034
  • [5] L.S. Carvalho, N. Gonçalves, N.A. Fonseca, J.N. Moreira, Cancer stem cells and nucleolin as drivers of carcinogenesis, Pharmaceuticals 14/1 (2021) 60. DOI: https://doi.org/10.3390/ph14010060
  • [6] F. Pichiorri, D. Palmieri, L. De Luca, J. Consiglio, J. You, A. Rocci, T. Talabere, C. Piovan, A. Lagana, L. Cascione, J. Guan, P. Gasparini, V. Balatti, G. Nuovo, V. Coppola, C.C. Hofmeister, G. Marcucci, J.C. Byrd, S. Volinia, C.L. Shapiro, M.A. Freitas, C.M. Croce, In vivo NCL targeting affects breast cancer aggressiveness through miRNA regulation, Journal of Experimental Medicine 210/5 (2013) 951-968. DOI: https://doi.org/10.1084/jem.20120950
  • [7] F. Li, J. Lu, J. Liu, C. Liang, M. Wang, L. Wang, D. Li, H. Yao, Q. Zhang, J. Wen, Z.-K. Zhang, J. Li, Q. Lv, X. He, B. Guo, D. Guan, Y. Yu, L. Dang, X. Wu, Y. Li, G. Chen, F. Jiang, S. Sun, B.-T. Zhang, A. Lu, G. Zhang, A water-soluble nucleolin aptamer-paclitaxel conjugate for tumor-specific targeting in ovarian cancer, Nature Communications 8/1 (2017) 1390. DOI: https://doi.org/10.1038/s41467-017-01565-6
  • [8] V. Marcel, F. Catez, C.M. Berger, E. Perrial, A. Plesa, X. Thomas, E. Mattei, S. Hayette, P. Saintigny, P. Bouvet, J.J Diaz, C. Dumontet, Expression profiling of ribosome biogenesis factors reveals nucleolin as a novel potential marker to predict outcome in AML patients, PloS One 12/1 (2017) e0170160. DOI: https://doi.org/10.1371/journal.pone.0170160
  • [9] J. Y. Xu, S. Lu, X.Y. Xu, S.L. Hu, B. Li, W.X. Li, J.Y. Chang, Prognostic significance of nuclear or cytoplasmic nucleolin expression in human non-small cell lung cancer and its relationship with DNA-PKcs, Tumor Biology 37/8 (2016) 10349-10356. DOI: https://doi.org/10.1007/s13277-016-4920-6
  • [10] J. Wang, J. Wu, X. Li, H. Liu, J. Qin, Z. Bai, B. Chi, X. Chen, Identification and validation nucleolin as a target of curcumol in nasopharyngeal carcinoma cells, Journal of Proteomics 182 (2018) 1-11. DOI: https://doi.org/10.1016/j.jprot.2018.04.025
  • [11] S. Ranganathan, D. Halagowder, N.D. Sivasithambaram, Quercetin suppresses twist to induce apoptosis in MCF-7 breast cancer cells, PloS One 10/10 (2015) e0141370. DOI: https://doi.org/10.1371/journal.pone.0141370
  • [12] M. Hashemzaei, A. Delarami Far, A. Yari, R.E. Heravi, K. Tabrizian, S.M. Taghdisi, S.E. Sadegh, K. Tsarouhas, D. Kouretas, G. Tzanakakis, D. Nikitovic, N.Y. Anisimov, D.A. Spandidos, A.M. Tsatsakis, R. Rezaee, Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo, Oncology Reports 38/2 (2017) 819-828. DOI: https://doi.org/10.3892/or.2017.5766
  • [13] C.S. Lei, Y.C. Hou, M.H. Pai, M.T. Lin, S.L. Yeh, Effects of quercetin combined with anticancer drugs on metastasis-associated factors of gastric cancer cells: in vitro and in vivo studies, The Journal of Nutritional Biochemistry 51 (2018) 105-13. DOI: https://doi.org/10.1016/j.jnutbio.2017.09.011
  • [14] M. Hemati, F. Haghiralsadat, F. Jafary, S. Moosavizadeh, A. Moradi, Targeting cell cycle protein in gastric cancer with CDC20siRNA and anticancer drugs (doxorubicin and quercetin) co-loaded cationic PEGylated nanoniosomes, International Journal of Nanomedicine 14 (2019) 6575-6585. DOI: https://doi.org/10.2147/IJN.S211844
  • [15] J. Duo, G.G Ying, G.W Wang, L. Zhang, Quercetin inhibits human breast cancer cell proliferation and induces apoptosis via Bcl-2 and Bax regulation, Molecular Medicine Reports 5/6 (2012) 1453-1456. DOI: https://doi.org/10.3892/mmr.2012.845
  • [16] F. Niazvand, M. Orazizadeh, L. Khorsandi, M Abbaspour, E. Mansouri, A. Khodadadi, Effects of quercetin-loaded nanoparticles on MCF-7 human breast cancer cells, Medicina 55/4 (2019) 114. DOI: https://doi.org/10.3390/medicina55040114
  • [17] S. Sapino, E. Ugazio, L. Gastaldi, I. Miletto, G. Berlier, D. Zonari, S. Oliaro-Bosso, Mesoporous silica as topical nanocarriers for quercetin: Characterization and in vitro studies, European Journal of Pharmaceutics and Biopharmaceutics 89 (2015) 116-125. DOI: https://doi.org/10.1016/j.ejpb.2014.11.022
  • [18] F. Din, W. Aman, I. Ullah, O.S. Qureshi, O. Mustapha, S. Shafique, A. Zeb, Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors, International Journal of Nanomedicine, 17, (2017) 7291-7309. DOI: https://doi.org/10.2147/IJN.S146315
  • [19] A. Sharma, N. Jain, R. Sareen, Nanocarriers for diagnosis and targeting of breast cancer. BioMed Research International 2013 (2013) 960821. DOI: https://doi.org/10.1155/2013/960821
  • [20] Y. Cui, M. Zhang, F. Zeng, H. Jin, Q. Xu, Y. Huang, Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy, ACS Applied Materials and Interfaces 8/47 (2016) 32159-32169. DOI: https://doi.org/10.1021/acsami.6b10175
  • [21] K.H. Ramteke, P.A. Dighe, A.R. Kharat, S.V. Patil, Mathematical models of drug dissolution: a review, Scholars Academic Journal of Pharmacy 3/5 (2014) 388-396.
  • [22] S. Dash, P.N. Murthy, L. Nath, P. Chowdhury, Kinetic modeling on drug release from controlled drug delivery systems, Acta Poloniae Pharmaceutica - Drug Research 67/3 (2010) 217-223.
  • [23] P. Talarska, M. Boruczkowski, J. Żurawski, Current knowledge of silver and gold nanoparticles in laboratory research - Application, toxicity, cellular uptake, Nanomaterials 11/9 (2021) 2454. DOI: https://doi.org/10.3390/nano11092454
  • [24] C.F. Wang, E.M. Mäkilä, M.H. Kaasalainen, M.V. Hagström, J.J. Salonen, J.T. Hirvonen, H.A. Santos, Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy, Acta Biomaterialia 16 (2015) 206-214. DOI: https://doi.org/10.1016/j.actbio.2015.01.021
  • [25] Y. Nitheesh, R. Pradhan, S. Hejmady, R. Taliyan, G. Singhvi, A. Alexander, P. Kesharwani, S.K. Dubey, Surface engineered nanocarriers for the management of breast cancer, Materials Science and Engineering: C 130 (2021) 112441. DOI: https://doi.org/10.1016/j.msec.2021.112441
  • [26] R. Cheng, S. Wang, K. Moslova, E. Mäkilä, J. Salonen, J. Li, J. Hirvonen, B. Xia, H.A. Santos, Quantitative Analysis of Porous Silicon Nanoparticles Functionalization by 1H NMR, ACS Biomaterials Science and Engineering 8/10 (2022) 4132-4139. DOI: https://doi.org/10.1021/acsbiomaterials.1c00440
  • [27] T.N. Nguyen, D.H. Nguyen-Tran, L.G. Bach, T.H. Du Truong, N.T Le, D.H. Nguyen, Surface PEGylation of hollow mesoporous silica nanoparticles via aminated intermediate, Progress in Natural Science: Materials International 29/6 (2019) 612-616. DOI: https://doi.org/10.1016/j.pnsc.2019.10.002
  • [28] P. Dong, K.P. Rakesh, H.M. Manukumar, Y.H. Mohammed, C.S. Karthik, S. Sumathi, P. Mallu, H.L Qin, Innovative nano-carriers in anticancer drug delivery - a comprehensive review, Bioorganic Chemistry 85 (2019) 325-336. DOI: https://doi.org/10.1016/j.bioorg.2019.01.019
  • [29] T. Kumeria, S.J. McInnes, S. Maher, A. Santos, Porous silicon for drug delivery applications and theranostics: recent advances, critical review and perspectives, Expert Opinion on Drug Delivery 14/12 (2017) 1407-1422. DOI: https://doi.org/10.1080/17425247.2017.1317245
  • [30] J. Wang, T. Kumeria, M.T. Bezem, J. Wang, M.J. Sailor, Self-reporting photoluminescent porous silicon microparticles for drug delivery, ACS Applied Materials and Interfaces 10/4 (2018) 3200-3209. DOI: https://doi.org/10.1021/acsami.7b09071
  • [31] Z. Chaudhary, S. Subramaniam, G.M. Khan, M.M. Abeer, Z. Qu, T. Janjua, T. Kumeria, J. Batra, A. Popat, Encapsulation and controlled release of resveratrol within functionalized mesoporous silica nanoparticles for prostate cancer therapy, Frontiers in Bioengineering and Biotechnology 7 (2019) 225. DOI: https://doi.org/10.3389/fbioe.2019.00225
  • [32] J.M. Zuidema, T. Kumeria, D. Kim, J. Kang, J. Wang, G. Hollett, X. Zhang, D.S. Roberts, N. Chan, C. Dowling, E. Blanco‐Suarez, N.J. Allen, M.H. Tuszynski, M.J. Sailor, Oriented Nanofibrous Polymer Scaffolds Containing Protein‐Loaded Porous Silicon Generated by Spray Nebulization, Advanced Materials 30/12 (2018) 1706785. DOI: https://doi.org/10.1002/adma.201706785
  • [33] F. Aghapour, A.A. Moghadamnia, A. Nicolini, S.N. Kani, L. Barari, P. Morakabati, L. Rezazadeh, S. Kazemi, Quercetin conjugated with silica nanoparticles inhibits tumor growth in MCF-7 breast cancer cel lines, Biochemical and Biophysical Research Communications 500/4 (2018) 860-865. DOI: https://doi.org/10.1016/j.bbrc.2018.04.174
  • [34] L. Khorsandi, M. Orazizadeh, F. Niazvand, M.R. Abbaspour, E. Mansouri, A. Khodadadi, Quercetin induces apoptosis and necroptosis in MCF-7 breast cancer cells, Bratislava Medical Journal 118/2 (2017) 123-128. DOI: https://doi.org/10.4149/bll_2017_025
  • [35] S.K. Bose, T.K. Sengupta, S. Bandyopadhyay, E.K. Spicer, Identification of Ebp1 as a component of cytoplasmic bcl-2 mRNP (messenger ribonucleoprotein particle) complexes, Biochemical Journal 396/1 (2006) 99-107. DOI: https://doi.org/10.1042/BJ20051548
  • [36] S. Oh, D. Ni, S.D. Pirooz, J.Y.D. Lee, Z. Zhao, C. Liang, Downregulation of autophagy by Bcl-2 promotes MCF7 breast cancer cell growth independent of its inhibition of apoptosis, Cell Death and Differentiation 18/3 (2011) 452-464. DOI: https://doi.org/10.1038/cdd.2010.116
  • [37] S. Romano, N. Fonseca, S. Simões, J. Gonçalves, J.N. Moreira, Nucleolin-based targeting strategies for cancer therapy: from targeted drug delivery to cytotoxic ligands, Drug Discovery Today 24/10 (2019) 1985-2001. DOI: https://doi.org/10.1016/j.drudis.2019.06.018
  • [38] S.J. McInnes, A. Santos, T. Kumeria, Porous silicon particles for cancer therapy and bioimaging, in: G. Gonçalves, G. Tobias (eds), Nanooncology. Nano-medicine and Nanotoxicology, Springer, Cham, 2018, 305-340. DOI: https://doi.org/10.1007/978-3-319-89878-0_9
  • [39] M. Harwood, B. Danielewska-Nikiel, J.F. Borzelleca, G.W. Flamm, G.M. Williams, T.C. Lines, A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties, Food and Chemical Toxicology 45/11 (2007) 2179-2205. DOI: https://doi.org/10.1016/j.fct.2007.05.015
  • [40] M.J. Ruiz, M. Fernández, J.M. Estela, Asensi, M.Á.J. Mañes, Y. Picó, Short-term oral toxicity of quercetin and pterostibene in Swiss mice, Toxicology Letters 164 (2006) S275-S276. DOI: https://doi.org/10.1016/j.toxlet.2006.07.232
  • [41] Z. Liu, V. Balasubramanian, C. Bhat, M. Vahermo, E. Mäkilä, M. Kemell, F. Fontana, A. Janoniene, V. Petrikaite, J. Salonen, J. Yli‐Kauhaluoma, J. Hirvonen, H. Zhang, H.A. Santos, Quercetin‐Based Modified Porous Silicon Nanoparticles for Enhanced Inhibition of Doxorubicin‐Resistant Cancer Cells, Advanced Healthcare Materials 6/3 (2017) 1601009. DOI: https://doi.org/10.1002/adhm.201601009
  • [42] G.H. Lee, S.J. Lee, S.W. Jeong, H.C. Kim, G.Y. Park, S.G. Lee, J.H. Choi, Antioxidative and antiinflammatory activities of quercetin-loaded silica nanoparticles. Colloids and Surfaces B: Biointerfaces 143 (2016) 511-517. DOI: https://doi.org/10.1016/j.colsurfb.2016.03.060
  • [43] A.C. Gregório, M. Lacerda, P. Figueiredo, S. Simões, S. Dias, J.N. Moreira, Meeting the needs of breast cancer: A nucleolin’s perspective, Critical Reviews in Oncology/Hematology 125 (2018) 89-101. DOI: https://doi.org/10.1016/j.critrevonc.2018.03.008
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de8b7fae-e53c-422a-a8f8-16776b0e9e88
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.