PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical modeling of the phenomena that occur in a biological tissue containing photosensitizer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study is to analyze photothermal and photochemical phenomena that occur during photodynamic therapy (PDT). In this type of therapy, under the influence of the laser, reactions take place related to the transformation of triplet oxygen form into its singlet form which is cytotoxic to the tissue. The increases in temperature resulting from the laser-tissue interaction during PDT are not big; however, they can lead to changes in tissue perfusion, which can affect oxygen delivery to the tissue. The proposed model uses optical diffusion equation, Pennes bioheat transfer equation, and reactions equations for PDT. The main findings of the analysis show the impact of temperature on the value of the perfusion coefficient and triplet oxygen distributions at the end of the treatment procedure.
Rocznik
Strony
40--51
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • Department of Computational Mechanics and Engineering Silesian University of Technology Gliwice, Poland
autor
  • Department of Computational Mechanics and Engineering Silesian University of Technology Gliwice, Poland
Bibliografia
  • [1] Abdel-Kader M.H. (ed). (2016). Photodynamic Therapy: From Theory to Application. Berlin, Heidelberg: Springer-Verlag.
  • [2] Zhu T.C., Kim M.M., Liang Xing, Finlay J.C., & Busch T.M. (2015). In-vivo singlet oxygen threshold doses for PDT. Photononics & Lasers in Medicine, 4(1), 59-71.
  • [3] Wang, K.K., Finlay, J.C., Busch, T.M., Hahn, S.M., & Zhu, T.C. (2010). Explicit dosimetry for photodynamic therapy: macroscopic singlet oxygen modeling. Journal of Biophotonics, 3(5-6), 304-318.
  • [4] Niemz, M.H. (2007). Laser-tissue Interaction. Berlin, Heidelberg, New York: Springer-Verlag.
  • [5] Zhu, T.C., Liu, B., & Penjweini, R. (2015). Study of tissue oxygen supply rate in a macroscopic photodynamic therapy singlet oxygen model. Journal of Biomedical Optics, 20, 038001.
  • [6] Korczak, A., & Jasiński, M. (2019). Modelling of biological tissue damage process with application of interval arithmetic. Journal of Theoretical and Applied Mechanics, 57, 249-261.
  • [7] Saeed, T., & Abbas, I. (2022). Finite element analyses of nonlinear DPL bioheat model in spherical tissues using experimental data. Mechanics Based Design of Structures and Machines, 50, 1287-1297.
  • [8] Dombrovsky, L.A., Randrianalisoa, J.H., Lipinski, W., & Timchenko, V. (2013). Simplified approaches to radiative transfer simulations in laser induced hyperthermia of superficial tumors. Computational Thermal Sciences, 5(6), 521-530.
  • [9] Alzahrani, F., & Abbas, I. (2022). A numerical solution of nonlinear DPL bioheat model in biological tissue due to laser irradiations. Indian Journal of Physics, 96, 377-383.
  • [10] Jasiński, M. (2018). Numerical analysis of soft tissue damage process caused by laser action. AIP Conference Proceedings, 1922, 060002.
  • [11] El-Nabulsi, R.A. (2021). Fractal Pennes and Cattaneo-Vernotte bioheat equations from product-like fractal geometry and their implications on cells in the presence of tumour growth. Journal of the Royal Society Interface, 18, 20210564.like fractal geometry and their implications on cells in the presence of tumour growth. Journal of the Royal Society Interface, 18, 20210564.
  • [12] El-Nabulsi, R.A., & Anukool W. (2022). Nonlocal thermal effects on biological tissues and tumors. Thermal Science and Engineering Progress, 34, 101424.
  • [13] Paruch, M. (2020). Mathematical modeling of breast tumor destruction using fast heating during radiofrequency ablation. Materials, 13, 136.
  • [14] Paruch, M. (2017). Identification of the cancer ablation parameters during RF hyperthermia using gradient, evolutionary and hybrid algorithms. International Journal of Numerical Methods for Heat & Fluid Flow, 27, 674-697.
  • [15] Mochnacki, B., & Ciesielski, M. (2016). Sensitivity of transient temperature field in domain of forearm insulated by protective clothing with respect to perturbations of external boundary heat flux. Bulletin of the Polish Academy of Sciences – Technical Sciences, 64, 591-598.
  • [16] Chaundhary, R.K., Kumar, D., Rai, K.N., & Singh, J. (2021). Analysis of thermal injuries using classical Fourier and DPL models for multi-layer of skin under different boundary conditions.International Journal of Biomathematics, 14, 2150040.
  • [17] Chaundhary, R.K., Kumar, D., Rai, K.N., & Singh, J. (2022). Numerical simulation of the skin tissue subjected to hyperthermia treatment using a nonlinear DPL model. Thermal Science and Engineering Progress, 34, 2022, 101394.
  • [18] Giordano, M.A., Gutierrez, G., & Rinaldi, C. (2010). Fundamental solutions to the bioheat equation and their application to magnetic fluid hyperthermia. International Journal of Hyperthermia, 26, 475 485.
  • [19] Abraham, J.P., & Sparrow E.M. (2007). A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties. International Journal of Heat and Mass Transfer, 50(13-14), 2537-2544.
  • [20] Majchrzak, E. (2013). Application of different variants of the BEM in numerical modeling of bioheat transfer processes. MCB: Molecular & Cellular Biomechanics, 10(3), 201-232.
  • [21] Majchrzak, E., & Mochnacki, B. (2016). Dual-phase lag equation. Stability conditions of a numerical algorithm based on the explicit scheme of the finite difference method. Journal of Applied Mathematics and Computational Mechanics, 15, 89-96.
  • [22] Majchrzak E., Turchan L., & Dziatkiewicz J. (2015). Modeling of skin tissue using the generalized dual phase-lag equation. Archives of Mechanics, 67(6), 417-437.
  • [23] Zhu, L., Schappeler, T., Cordeo-Tumangday, C., & Rosengart, A.J. (2009). Thermal interactions between blood and tissue: development of a theoretical approach in predicting body temperature during blood cooling/rewarming. Advanced Numerical Heat Transfer, 3, 197-219.
  • [24] Goldman, D. (2008). Theoretical models of microvascular oxygen transport to tissue. Microcirculation, 15, 795-811.
  • [25] Jasiński, M. (2022). Numerical analysis of thermal damage and oxygen distribution in laser irradiated tissue. Journal of Applied Mathematics and Computational Mechanics, 2, 51-62.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de8a8dad-7d8b-4c72-9c7f-4034ce966c7a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.