Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, the double-difference tomography (tomoDD) method is applied to jointly invert the three-dimensional (3-D) crustal velocity structure and earthquake locations in the Maduo area based on automatically and manually picked seismic phase data. The results show that: (1) We speculated that the seismogenic fault is the Kunlun Pass-Jiangcuo Fault based on the spatial distributions of the aftershocks and surface rupture and the strike slip nature of the fault and the mainshock. In addition, a continuous northwest-trending branch fault may exist on the north side of the western section of the Maduo aftershocks. (2) We speculated that the Maduo earthquake was a bilateral rupture based on the media strength of the upper crust and near the surface and the seismic distribution. The findings also provide evidence for the large-scale rupture of the Maduo earthquake. In addition, the high-velocity body to the upper right of the mainshock satisfactorily explains the unobvious rupture above the mainshock. The late weak seismicity indicates that the energy released during the earthquake rupture was sufficient, and it is concluded that the short-term seismic hazard is insignificant. (3) The low S-wave velocity and high wave ratio reflect the existence of crustal fluids in the Maduo area based on the results of previous studies. The Maduo earthquake occurred on the side of the biased high-velocity body in the high-low velocity transition zone, where the stress easily accumulates and is easily released. Therefore, we conclude that the Maduo earthquake accumulated significant stress in the source area. The crustal fluids encountered a hard slope-type high-velocity body and flowed upward into the seismogenic fault, weakening the seismogenic fault. The combined effect of both processes finally triggered the Maduo MS7.4 earthquake.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1765--1781
Opis fizyczny
Bibliogr. 98 poz.
Twórcy
autor
- Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou, Gansu, China
autor
- Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou, Gansu, China
autor
- Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou, Gansu, China
- Institute of Geophysics, China Earthquake Administration, Beijing, China
Bibliografia
- 1. Ampuero JP, Ben-Zion Y (2008) Cracks, pulses and macroscopic asymmetry of dynamic rupture on a bimaterial interface with velocity-weakening friction. Geophys J Int 173(2):674-692. https://doi.org/10.1111/j.1365-246X.2008.03736.x
- 2. Brietzke GB, Ben-Zion Y (2006) Examining tendencies of inplane rupture to migrate to material interfaces. Geophys J Int 167(2):807-819. https://doi.org/10.1111/j.1365-246X.2006. 03137.x
- 3. Chen GY, Li JL (2022) CubeNet: array-based seismic phase picking with deep learning. Seismol Res Lett 93(5):2554-2569. https:// doi.org/10.1785/0220220147
- 4. Chen SF, Wilson CJL, Worley BA (1995) Tectonic transition from the Songpan-Garze Fold Belt to the Sichuan Basin. South-West China Basin Res 7(03):235-253. https://doi.org/10.1111/j.1365-2117.1995.tb00108.x
- 5. Chen ZH, Lou H, Meng XH et al (2014) 3-D P-wave velocity structure of crust and upper mantle beneath Ordos Block and North China. Prog Geophys 29(03):999-1007. https://doi.org/10.6038/ pg20140303
- 6. Clark M, Royden L (2000) Topographic ooze: building the eastern margin of Tibet by lower crustal flow. Geology 28:703-706. https://doi.org/10.1130/0091-7613(2000)28%3C703:TOB-TEM%3E2.0.CO;2
- 7. Deng QD, Zhang PZ, Ran YK et al (2003) Active tectonics and earthquake activities in China. Earth Sci Front 10(S1):66-73
- 8. Deng WZ, Chen JH, Guo B et al (2014) Fine velocity structure of the Longmenshan fault zone by double-difference tomography. Chin J Geophys 57(4):1101-1110. https://doi.org/10.6038/cjg20 140408
- 9. Deng SQ, Zhang WB, Yu XW et al (2020) Analysis on crustal structure features of southern Sichuan-Yunnan by regional double-difference seismic tomography. Chin J Geophys 63(10):3653-3668. https://doi.org/10.6038/cjg2020N0383
- 10. Du GB, Wu QJ, Zhang XM (2021) Three-dimensional seismic velocity structure beneath the M6.4 Yangbi, Yunnan earthquake region. Acta Seismol Sin 43(4):397-409. https://doi.org/10.11939/jass. 20210104
- 11. Eberhart-Phillips D (1986) Three-dimensional velocity structure in northern California Coast Ranges from inversion of local earthquake arrival times. Bull Seismol Soc Am 76(04):1025-1052. https://doi.org/10.1785/BSSA0760041025
- 12. Fan WY, Chen YS, Tang YC et al (2015) Crust and upper mantle velocity structure of the eastern Tibetan Plateau and adjacent regions from ambient noise tomography. Chin J Geophys 58(05):1568-1583. https://doi.org/10.6038/cjg20150510
- 13. Guo H, Zhang HJ, Froment B (2018) Structural control on earthquake behaviors revealed by high-resolution VP/VS imaging along the Gofar transform fault, East Pacific Rise. Earth Planet Sci Lett 499:243-255. https://doi.org/10.1016/j.epsl.2018.07.037
- 14. Guo HL, Chang LJ, Lu LY et al (2022) High-resolution earthquake catalog for the focal area of the Qinghai Madoi MS7.4 earthquake based on deep-learning phase picker and dense array. Chin J Geophys 65(05):1628-1643. https://doi.org/10.6038/cjg2022P0863
- 15. Hu J, Zhao T, Bai CY et al (2021) Three-dimensional P and S wave velocity structure and earthquake relocation of the May 21, 2021 Yangbi MS6.4 source region. Chin J Geophys 64(12):4488-4509. https://doi.org/10.6038/cjg2021P0456
- 16. Huang JL, Zhao DP, Zheng SH (2002) Lithospheric structure and its relationship to seismic and volcanic activity in southwest China. J Geophys Res Solid Earth. https://doi.org/10.1029/2000JB000137
- 17. Humphreys E, Clayton RW (1988) Adaptation of back projection tomography to seismic travel time problems. J Geophys Res Solid Earth 93(B2):1073-1085. https://doi.org/10.1029/JB093 iB02p01073
- 18. Jiang C, Fang L, Fan L et al (2021) Comparison of the earthquake detection effects of phasenet and EQTransformer considering the Yangbi and Maduo earthquakes. Earthq Sci. https://doi.org/10. 29382/eqs-2021-0038
- 19. Klein FW (2014) User's Guide to HYPOINVERSE-2000, a Fortran program to solve for earthquake locations and magnitudes, version 1.40, June 2014. U.S. Geological Survey Open-File Report 02-171. https://doi.org/10.13140/2.1.4859.3602
- 20. Lei JS, Zhang GW, Xie FR et al (2012) Relocation of the 10 March 2011 Yingjiang, China, earthquake sequence and its tectonic implications. Earthq Sci 25:103-110. https://doi.org/10.1007/ s11589-012-0836-4
- 21. Li DH, Wu PP, Ding ZF (2015) Tomography of the three dimensional P-wave velocity structure in the source region of the MS7.0 Lushan, Sichuan, earthquake and its surrouding areas. Acta Seis-mol Sin 37(03):371-385. https://doi.org/10.11939/jass.2015.03. 001
- 22. Li MJ, Shen XZ, Zhang YS et al (2018) Fine crustal structures of northeast margin of the Tibetan Plateau and structural features of Jiuzhaigou earthquake focal area constrained by the data from a high-density seismic array. Chin J Geophys 61(5):2075-2087. https://doi.org/10.6038/cjg2018L0720
- 23. Li ZM, Li WQ, Li T et al (2021) Seismogenic fault and coseismic surface deformation of the Maduo MS7.4 earthquake in Qinghai, China: a quick report. Seismol Geol 43(03):722-737. https://doi. org/10.3969/j.issn.0253-4967.2021.03.016
- 24. Liao SR, Zhang HC, Fan LP (2021) Development of a real-time intelligent seismic processing system and its application in the 2021 Yunnan Yangbi MS6.4 earthquake. Chin J Geophys 64(10):3632-3645. https://doi.org/10.6038/cjg2021O0532
- 25. Liu QY, Li Y, Chen JH et al (2009) Wenchuan MS8.0 earthquake: preliminary study of the S-wave velocity structure of the crust and upper mantle. Chin J Geophys 52(02):309-319
- 26. Liu BY, Wang XN, Yin ZW et al (2018) 3-D P-wave crustal velocity structure of the 1927 Gulang M8.0 earthquake and its adjacent area. Chin J Geophys 61(10):3980-3993. https://doi.org/10.6038/ cjg2018K0582
- 27. Mousavi SM, Sheng YX, Zhu WQ et al (2019) STanford earthquake dataset (STEAD): a global data set of seismic signals for AI. IEEE Access 7:179464-179476. https://doi.org/10.1109/ACCESS.2019. 2947848
- 28. Mousavi SM, Ellsworth WL, Zhu WQ et al (2020) Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nat Commun 11:3952. https:// doi.org/10.1038/s41467-020-17591-w
- 29. Okada T, Yaginuma T, Umino N et al (2006) Detailed imaging of the fault planes of the 2004 Niigata-Chuetsu, central Japan, earthquake sequence by double-difference tomography. Earth Planet Sci Lett 244(1-2):32-43. https://doi.org/10.1016/j.epsl.2006.02. 010
- 30. Owens TJ, Zandt G (1997) Implications of crustal property variations for models of Tibetan plateau evolution. Nature 387(6628):37-43. https://doi.org/10.1038/387037a0
- 31. Pan JW, Li HB, Chevalier ML et al (2022) Co-seismic rupture of the 2021, Mw7.4 Maduo earthquake (northern Tibet): Short-cutting of the Kunlun fault big bend. Earth Planet Sci Letters 594:117703. https://doi.org/10.1016/j.epsl.2022.117703
- 32. Pei SP, Su JR, Zhang HJ et al (2010) Three-dimensional seismic velocity structure across the 2008 Wenchuan MS8.0 earthquake, Sichuan, China. Tectonophysics 491(1-4):211-217. https://doi. org/10.1016/j.tecto.2009.08.039
- 33. Qu JH, Jiang HK, Li J et al (2015) Preliminary study for seismogenic structure of the Rushan earthquake sequence in 2013-2014. Chin J Geophys 58(06):1954-1962. https://doi.org/10.6038/cjg20150611
- 34. Shao ZG, Fu RS, Xue TX et al (2008) The numerical simulation and discussion on mechanism of postseismic deformation after Kunlun MS 8.1 earthquake. Chin J Geophys 51(03):805-816
- 35. Stephen B, Edward AB, Sebastian H et al (2022) Imaging sub-caldera structure with local seismicity, Okataina Volcanic Centre, Taupo Volcanic Zone, using double-difference seismic tomography. J Volcanol Geoth Res 431:107653. https://doi.org/10.1016/j.jvolg eores.2022.107653
- 36. Stesky RM (1985) Compressional and shear velocities of dry and saturated jointed rock: a laboratory study. Geophys J Int 83(01):239-262. https://doi.org/10.1111/j.1365-246X.1985.tb05165.x
- 37. Sun Q, Pei SP, Su JR et al (2021) Three-dimensional seismic velocity structure across the 17 June 2019 Changning MS6.0 earthquake, Sichuan, China. Chin J Geophys 64(1):36-53. https://doi.org/10. 6038/cjg2021O0246
- 38. Takei Y (2002) Effect of pore geometry on VP/VS: from equilibrium geometry to crack. J Geophys Res Solid Earth. https://doi.org/10. 1029/2001JB000522
- 39. Tan J, Li HY, Li XF et al (2015) Radial anisotropy in the crust beneath the Northeastern Tibetan plateau from Ambient noise tomography. J Earth Sci 26(06):864-871. https://doi.org/10.1007/ s12583-015-0543-x
- 40. Tao W, Shen ZK (2008) Heat flow distribution in Chinese continent and its adjacent areas. Prog Nat Sci 18(07):843-849. https://doi. org/10.1016/j.pnsc.2008.01.018
- 41. Thurber CH (1992) Hypocenter-velocity structure coupling in local earthquake tomography. Phys Earth Planet Inter 75(1-3):55-62. https://doi.org/10.1016/0031-9201(92)90117-E
- 42. Thurber C, Zhang HJ, Brocher T et al (2009) Regional three-dimensional seismic velocity model of the crust and uppermost mantle of northern California. J Geophys Res Solid Earth 114(B1):304. https://doi.org/10.1029/2008JB005766
- 43. Tian Y, Zhao DP, Sun RM et al (2007) The 1992 Landers earthquake: effect of crustal heterogeneity on earthquake generation. Chin J Geophys 50:1300-1308. https://doi.org/10.1002/cjg2.1149
- 44. Toksoz MN, Cheng CH, Timur A (1976) Velocities of seismic waves in porous rocks. Geophysics 41(04):621-645. https://doi.org/10. 1190/1.1440639
- 45. Toyokuni G, Zhao DP, Chen KH (2016) Tomography of the source zone of the 2016 South Taiwan earthquake. Geophys J Int 207(01):635-643. https://doi.org/10.1093/gji/ggw304
- 46. Toyokuni G, Zhao DP, Chen KH (2021) Structural control on the 2018 and 2019 Hualien earthquakes in Taiwan. Phys Earth Planet Inter 312:106673. https://doi.org/10.1016/j.pepi.2021.106673
- 47. Um J, Thurber C (1987) A fast algorithm for two-point seismic ray tracing. Bull Seismol Soc Am 77(03):972-986. https://doi.org/ 10.1785/BSSA0770030972
- 48. Wadati K, Oki S (1933) On the travel time of earthquake waves. (Part II). J Meteorol Soc Japan Ser II 11(1):14-28. https://doi.org/10. 2151/jmsj1923.11.1_14
- 49. Waldhauser F, Ellsworth WL (2000) A double-difference earthquake location algorithm: method and application to the Northern Hayward Fault, California. Bull Seismol Soc Am 90(06):1353-1368. https://doi.org/10.1785/0120000006
- 50. Wang CY, Mooney WD, Wang XL et al (2002) Study on 3-D velocity structure of crust and upper mantle in Sichuan-Yunnan region, China. Acta Seismol Sin 24(1):1-16. https://doi.org/10.3321/j. issn:0253-3782.2002.01.001
- 51. Wang WL, Wu JP, Fang LH et al (2012) Relocation of the Yushu MS7.1 earthquake and its aftershocks in 2010 from HypoDD. Sci China Earth Sci 42(07):1037-1046. https://doi.org/10.1360/ zd-2012-42-7-1037
- 52. Wang CZ, Wu JP, Fang LH et al (2013) The relationship between wave velocity structure around Yushu earthquake source region and the distribution of aftershocks. Chin J Geophys 56(12):4072-4083. https://doi.org/10.6038/cjg20131212
- 53. Wang WL, Wu JP, Fang LH et al (2014) Double difference location of the Ludian MS6.5 earthquake sequences in Yunnan province in 2014. Chin J Geophys 57(09):3042-3051. https://doi.org/10. 6038/cjg20140929
- 54. Wang XN, Yu XW, Zhang WB (2015) 3-D P-wave velocity structure of the crust and relocation of earthquakes in the Lushan source
- 55. area. Chin J Geophys 58(04):1179-1193. https://doi.org/10. 6038/cjg20150408
- 56. Wang ZW, Zhao DP, Liu X et al (2017) Seismic attenuation tomography of the source zone of the 2016 Kumamoto earthquake (M7.3). J Geophys Res Solid Earth 122(04):2988-3007. https:// doi.org/10.1002/2016JB013704
- 57. Wang HB, Zhao DP, Huang ZC et al (2018) Crustal tomography of the 2016 Kumamoto earthquake area in West Japan using P and PmP data. Geophys J Int 214(02):1151-1163. https://doi.org/ 10.1093/gji/ggy177
- 58. Wang WL, Fang LH, Wu JP et al (2021) Aftershock sequence relocation of the 2021 MS7.4 Maduo Earthquake, Qinghai, China. Sci China Earth Sci 64(08):1371-1380. https://doi.org/10.1007/ s11430-021-9803-3
- 59. Wei WB, Unsworth M, Alan J et al (2001) Detection of widespread fluids in the Tibetan crust by Magnetotelluric studies. Science 292(5517):716-719. https://doi.org/10.1126/science.1010580
- 60. Wei XZ, Jiang MM, Liang XF et al (2017) Limited southward underthrusting of the Asian lithosphere and material extrusion beneath the northeastern margin of Tibet, inferred from tel-eseismic Rayleigh wave tomography. J Geophys Res Solid Earth 122(09):7172-7189. https://doi.org/10.1002/2016JB013832
- 61. Weislogel AL (2008) Tectonostratigraphic and geochronologic constraints on evolution of the Northeast Paleotethys from the Songpan-Ganzi complex, central China. Tectonophysics 451(1-4):331-345. https://doi.org/10.1016/j.tecto.2007.11.053
- 62. Wen XX, Shen XZ, Zhou QM (2022) Study on the characters of the aftershocks of Beiliu 5.2 earthquake using machine learning method and dense nodal seismic array. Chin J Geophys 65(9):3297-3308. https://doi.org/10.6038/cjg2022P0430
- 63. Wu JP, Yuan H, Zhang TZ et al (2009) Aftershock distribution of the MS8.0 Wenchuan earthquake and three dimensional P-wave velocity structure in and around source region. Chin J Geophys 52(02):320-328
- 64. Wu PP, Chang LJ, Lu LY et al (2022) Three-dimensional fine velocity structure of the upper crust of the 2021 Madoi MS7.4 earthquake. Chin J Geophys 65(06):2006-2021. https://doi.org/10. 6038/cjg2022P0860
- 65. Xiao Z, Gao Y (2017) Crustal velocity structure beneath the northeastern Tibetan plateau and adjacent regions derived from double difference tomography. Chin J Geophys 60(6):2213-2225. https://doi.org/10.6038/cjg20170615
- 66. Xin HL, Zeng XW, Kang M et al (2020) Crustal fine velocity structure of the Haiyuan arcuate tectonic zone from double-difference tomography. Chin J Geophys 63(3):897-914. https://doi. org/10.6038/cjg2020N0067
- 67. Xu ZG, Liang SS, Zhang GW et al (2021) Analysis of seismogenic structure of Madoi, Qinghai MS7.4 earthquake on May 22. Chin J Geophys 64(08):2657-2670. https://doi.org/10.6038/cjg20 21P0390
- 68. Yang JY, Sun WK, Hong SY et al (2021) Coseismic deformation analysis of the 2021 Qinghai Madoi M7.4 earthquake. Chin J Geophys 64(08):2671-2683. https://doi.org/10.6038/cjg20 21P0416
- 69. Yang ZQ, Zhao DP, Dong YP et al (2022) Crustal flow and fluids affected the 2021 M7.4 Maduo earthquake in Northeast Tibet. J Asian Earth Sci 225:105050. https://doi.org/10.1016/j.jseaes. 2021.105050
- 70. Yi GX, Wen XZ, Hua X et al (2011) Distributions of seismicity parameters and seismic apparent stresses on the Longmenshan-Minshan tectonic zone before the 2008 MS8.0 Wenchuan earthquake. Chin J Geophys 54(06):1490-1500. https://doi.org/10.3969/j.issn.0001-5733.2011.06.008
- 71. Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Ann Rev Earth Planet Sci 28(01):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
- 72. Yin XX, Wang WH, Cai R et al (2021) Precise location of the 2021 Maduo, Qinghai MS 7.4 earthquake and its seismogenic structure. China Earthq Eng J 43(04):834-839. https://doi.Org/10.3969/j. issn.1000-0844.2021.04.834
- 73. Yu XW, Chen YT, Zhang H (2010) Three-dimensional crustal P-wave velocity structure and seismicity analysis in Beijing-TianjinTangshan Region. Chin J Geophys 53(08):1817-1828. https:// doi.org/10.3969/j.issn.0001-5733.2010.08.007
- 74. Yuan ZD, Li T, Su P et al (2022) Large surface-rupture gaps and low surface fault slip of the 2021 Mw7.4 maduo earthquake along a low-activity strike-slip fault, Tibetan Plateau. Geophys Res Lett. https://doi.org/10.1029/2021GL096874
- 75. Yue H, Shen ZK, Zhao ZY et al (2022) Rupture process of the 2021 M7.4 Maduo earthquake and implication for deformation mode of the Songpan-Ganzi terrane in Tibetan Plateau. PNAS 119(23):e2116445119. https://doi.org/10.1073/pnas.2116445119
- 76. Zandt G, Ammon CJ (1995) Continental crust composition constrained by measurements of crustal Poisson’s ratio. Nature 374(6518):152-154. https://doi.org/10.1038/374152a0
- 77. Zhan Y, Liang MJ, Sun XY et al (2021) Deep structure and seismogenic pattern of the 2021.5.22 Madoi (Qinghai) MS7.4 earthquake. Chin J Geophys 64(07):2232-2252. https://doi.org/10.6038/cjg20 21O0521
- 78. Zhang HJ, Thurber CH (2003) Double-difference tomography: the method and its application to the Hayward fault, California. Bull Seismol Soc Am 93(05):1875-1889. https://doi.org/10.1785/ 0120020190
- 79. Zhang HJ, Thurber CH (2006) Development and applications of double-difference seismic tomography. Pure Appl Geophys 163:373403. https://doi.org/10.1007/s00024-005-0021-y
- 80. Zhang Z, Xu LS (2021) The centroid moment tensor solution of the 2021 MW7.5 Maduo, Qinghai, earthquake. Acta Seismol Sin 43(3):387-391. https://doi.org/10.11939/jass.20210079
- 81. Zhang HJ, Thurber CH, Shelly D et al (2004) High-resolution subducting-slab structure beneath northern Honshu, Japan, revealed by double-difference tomography. Geology 32(4):361-364. https:// doi.org/10.1130/G20261.2
- 82. Zhang HJ, Wang F, Myhill R et al (2019a) Slab morphology and deformation beneath Izu-Bonin. Nat Commun 10(1):1310. https://doi. org/10.1038/s41467-019-09279-7
- 83. Zhang M, Ellsworth WL, Beroza GC (2019b) Rapid earthquake association and location. Seismol Res Lett 90(06):2276-2284. https:// doi.org/10.1785/0220190052
- 84. Zhang GW, Li YJ, Hu XP (2022) Nucleation mechanism of the 2021 Mw7.4 Maduo earthquake, NE Tibetan Plateau: Insights from seismic tomography and numerical modeling. Tectonophysics 839:229528. https://doi.org/10.1016/j.tecto.2022.229528
- 85. Zhang JY, Wang X, Chen L (2022) Seismotectonics and fault geometries of the Qinghai Madoi MS7.4 earthquake sequence: Insight from aftershock relocations and focal mechanism solutions. Chin J Geophys 65(2):552-562. https://doi.org/10.6038/cjg2022P0516
- 86. Zhang QY, Wu YQ, Guo NN et al (2022) Research on deformation features of the 2021 Qinghai Maduo MS7.4 earthquake through
- 87. coseismic dislocation inversion. Adv Space Res 69(08):3059-3070. https://doi.org/10.1016/j.asr.2022.01.042
- 88. Zhang Z, Deng YF, Qiu HR et al (2022) High-resolution imaging of fault zone structure along the creeping section of the Haiyuan fault, NE Tibet, from data recorded by dense seismic arrays. J Geophys Res Solid Earth 127(9):e2022JB024468. https://doi.org/ 10.1029/2022JB024468
- 89. Zhao DP (2021) Seismic imaging of Northwest Pacific and East Asia: new insight into volcanism, seismogenesis and geodynamics. Earth Sci Rev 214:103507. https://doi.org/10.1016/j.earscirev. 2021.103507
- 90. Zhao DP, Hasegawa A, Horiuchi S (1992) Tomographic imaging of P and S wave velocity structure beneath northeastern Japan. J Geophys Res Solid Earth 97(B13):19909-19928. https://doi.org/ 10.1029/92JB00603
- 91. Zhao B, Gao Y, Huang ZB et al (2013) Double difference relocation, focal mechanism and stress inversion of Lushan MS7.0 earthquake sequence. Chin J Geophys 56(10):3385-3395. https://doi.org/10. 6038/cjg20131014
- 92. Zhao M, Chen S, Fang LH et al (2019) Earthquake phase arrival autopicking based on U-shaped convolutional neural network. Chin J Geophys 62(08):3034-3042. https://doi.org/10.6038/cjg2019M04 95
- 93. Zhao T, Wang Y, Ma J et al (2021) Relocation and focal mechanism solutions of the 2021 Maduo, Qinghai MS7.4 earthquake sequence. Seismol Geol 43(04):790-805. https://doi. org/10. 3969/j.issn.0253-4967.2021.04.004
- 94. Zhou MD, Zhang YS, Shi YL et al (2006) Three-dimensional crustal velocity structure in the northeastern margin of the Qinghai-Tibetan plateau. Progr Geophys 21(1):127-134
- 95. Zhu WQ, Beroza GC (2018) PhaseNet: a deep-neural-network-based seismic arrival-time picking method. Geophys J Int 216(1):261-273. https://doi.org/10.1093/gji/ggy423
- 96. Zhu GH, Yang HF, Tan YJ et al (2022) The cascading foreshock sequence of the MS6.4 Yangbi earthquake in Yunnan, China. Earth Planet Sci Lett 591:117594. https://doi.org/10.1016/j.epsl. 2022.117594
- 97. Zuo KZ, Chen JF (2018) 3-D body-wave velocity structure of crust and relocation of earthquakes in the Menyuan area. Chin J Geophys 61(07):2788-2801. https://doi.org/10.6038/cjg2018L0537
- 98. Zuo KZ, Zhao CP, Zhang HJ (2020) 3-D crustal structure and seismicity features of Changning-Xingwen area in the southwestern Sichuan Basin, China. Bull Seismol Soc Am 110(5):2154-2167. https://doi.org/10.1785/0120200085
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de87a9cd-64e9-492b-a1c3-5768db2c6293