PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

How to compute an isogeny on the extended Jacobi quartic curves?

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Computing isogenies between elliptic curves is a significant part of post-quantum cryptography with many practical applications (for example, in SIDH, SIKE, B-SIDH, or CSIDH algorithms). Comparing to other post-quantum algorithms, the main advantages of these protocols are smaller keys, the similar idea as in the ECDH, and a large basis of expertise about elliptic curves. The main disadvantage of the isogeny-based cryptosystems is their computational efficiency - they are slower than other post-quantum algorithms (e.g., lattice-based). That is why so much effort has been put into improving the hitherto known methods of computing isogenies between elliptic curves. In this paper, we present new formulas for computing isogenies between elliptic curves in the extended Jacobi quartic form with two methods: by transforming such curves into the short Weierstrass model, computing an isogeny in this form and then transforming back into an initial model or by computing an isogeny directly between two extended Jacobi quartics.
Twórcy
  • Faculty of Cybernetics, Military University of Technology, Warsaw, Poland
  • Faculty of Cybernetics, Military University of Technology, Warsaw, Poland
Bibliografia
  • [1] J. Velu, “Isogenies entre courbes elliptiques,” C. R. Acad. Sci. Paris Ser. A-B, vol. 273, 1971.
  • [2] D. Moody and D. Shumow, “Analogues of Velu’s formulas for isogenies on alternate models of elliptic curves,” Mathematics of Computation, vol. 85, no. 300, pp. 1929–1951, 2016.
  • [3] X. Xu, W. Yu, K. Wang, and X. He, “Constructing Isogenies on Extended Jacobi Quartic Curves,” in Information Security and Cryptology, K. Chen, D. Lin, and M. Yung, Eds. Cham: Springer International Publishing, pp. 416–427.
  • [4] Z. Hu, Z. Liu, L. Wang, and Z. Zhou, “Simplified isogeny formulas on twisted Jacobi quartic curves,” Finite Fields and Their Applications, vol. 78, p. 101981, 2022. [Online]. Available: https://doi.org/10.1016/j.ffa.2021.101981
  • [5] O. Billet and M. Joye, “The Jacobi Model of an Elliptic Curve and Side-Channel Analysis,” in Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, M. Fossorier, T. Høholdt, and A. Poli, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 34–42. [Online]. Available: https://doi.org/10.1007/3-540-44828-4_5
  • [6] I. Semaev, “Summation polynomials and the discrete logarithm problem on elliptic curves,” Cryptology ePrint Archive, Report 2004/031, 2004.
  • [7] L. Dzierzkowski, “Analysis of the possibility of hardware implementation of SIDH key exchange scheme,” Military University of Technology in Warsaw, 2020.
  • [8] W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes, “CSIDH: an efficient post-quantum commutative group action,” in International Conference on the Theory and Application of Cryptology and Information Security. Springer, 2018, pp. 395–427. [Online]. Available: https://doi.org/10.1007/978-3-030-03332-3_15
  • [9] H. Hisil, K. K.-H. Wong, G. Carter, and E. Dawson, “Jacobi Quartic Curves Revisited,” in Information Security and Privacy, C. Boyd and J. Gonzalez Nieto, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 452–468. [Online]. Available: https://doi.org/10.1007/978-3-642-02620-1_31
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de841bb4-3591-467a-a8aa-ed9e02e8c015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.