PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative study of phenol degradation with a wild-type and genetically modified P. vesicularis (pBR322). plasmid stability and fame profiling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It was evidenced that P. vesicularis is an efficient degrader of phenol but does not have a reporter system for monitoring bacterial survival in the environment. Therefore, P. vesicularis (pBR322) has been constructed. In this study we experimentally confirmed that introduction of plasmid pBR322 into P. vesicularis did not change its ability to degrade phenol in liquid media and after its inoculation into sterile soil. Moreover, it has been shown that plasmid pBR322 was stable in P. vesicularis during all experiments. Additionally, the pattern of fatty acid methyl esters for P. vesicularis (pBR322) looked similar to that of P. vesicularis under phenol exposure. Some fatty acids, especially branched and cyclopropane ones were sensitive markers of phenol utilization. These findings indicate that P. vesicularis (pBR322) due to the presence of plasmid could be used instead of P. vesicularis in bioaugmentation of phenol-contaminated areas.
Rocznik
Strony
137--155
Opis fizyczny
Bibliogr. 25 poz., tab., rys.
Twórcy
autor
  • Department of Biochemistry, University of Silesia, ul. Jagiellońska 28, 40-032 Katowice, Poland
  • Department of Biochemistry, University of Silesia, ul. Jagiellońska 28, 40-032 Katowice, Poland
autor
  • Institute of Materials Science, University of Silesia, ul. 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
Bibliografia
  • [1] GREŃ I., GUZIK U., WOJCIESZYŃSKA D., ŁABUŻEK S., Molecular basis for the degradation of aromatic xenobiotic compounds, Biotechnologia, 2008, 81, 58.
  • [2] VAN SCHIE P.M., YOUNG L.Y., Biodegradation of phenol: mechanisms and applications, Biorem. J., 2000, 4, 1.
  • [3] MROZIK A., PIOTROWSKA-SEGET Z., Bioaugmentation as a strategy for cleaning up soils contaminated with aromatic compounds, Microbiol. Res., 2010, 165, 363.
  • [4] JANSSON J.K., BJÖRKLÖF K., ELVANG A.M., JØRGENSEN K.S., Biomarkers for monitoring efficacy of bioremediation by microbial inoculants, Environ. Pollut., 2000, 107, 217.
  • [5] IBEKWE A.M., KENNEDY A.C., Fatty acid methyl ester (FAME) profiles as a tool to investigate community structure of two agricultural soil, Plant Soil, 1999, 206, 151.
  • [6] PIOTROWSKA-SEGET Z., MROZIK A., Signature lipid biomarker (SLB) analysis in determining changes in community structure of soil microorganisms, Pol. J. Environ. Stud., 2003, 12, 669.
  • [7] MROZIK A., ŁABUŻEK S., A comparison of biodegradation of phenol and homologous compounds by Pseudomonas vesicularis and Staphylococcus sciuri strains, Acta Microbiol. Pol., 2002, 51, 367,
  • [8] MROZIK A., SWĘDZIOŁ Ż., Bioaugmentation of phenol polluted soil with Pseudomonas vesicularis (pBR322) strain, Ekologia i Technika, 2010, 18, 87.
  • [9] LITYŃSKI T., JURKOWSKA H., GORLACH E., Chemical and agricultural analysis, Polish Scientific Press, Warsaw 1972.
  • [10] MROZIK A., PIOTROWSKA-SEGET Z., ŁABUŻEK S., FAME profiles in Pseudomonas vesicularis during catechol and phenol degradation in the presence of glucose as an additional carbon source, Pol. J. Microbiol., 2007, 56, 157.
  • [11] MROZIK A., CYCOŃ M., PIOTROWSKA-SEGET Z., Changes of FAME profiles as a marker of phenol degradation in different soils inoculated with Pseudomonas sp. CF600, Int. Biodeterior. Biodegradation, 2010, 64, 86.
  • [12] SAMBROOK J., RUSSEL D.W., Molecular cloning, CSH Cold Spring Harbor Laboratory Press, New York 2001.
  • [13] FUKUMOTO F., SATO M., MINOBE Y., Transformation of pBR322-derived plasmids in phytopathogenic Pseudomonas avenae and enhanced transformation in its proline-auxotrophic mutant, Curr. Microbiol., 1997, 34, 138.
  • [14] TREVORS J.T., VAN ELSAS J.D., STARODUB M.E., VAN OVERBEEK L.S., Survival of and plasmid stability in Pseudomonas and Klebsiella spp. introduced into agricultural drainage water, Can. J. Microbiol., 1989, 35, 675.
  • [15] KHLEIFAT K.M., Biodegradation of phenol by Ewingella americana: Effect of carbon starvation and some growth conditions, Process Biochem., 2006, 41, 2010.
  • [16] EL-SAYED W.S., IBRAHIM M.K., ABU-SHADY M., EL-BEIH F., OHAMURA N., SAIKI H., ANDO A., Isolation and characterization of phenol- catabolizing bacteria from a coking plant, Biosci. Biotechnol. Biochem., 2003, 67, 2026.
  • [17] HALUŠKA L., BARANČĬKOVÁ G., BALÁŽ Š., DERCOVÁ K., VRANA B., PAZ-WIESSHAAR M., FURČIOVÁ E., BIELEK P., Degradation of PCB in different soil by inoculated Alcaligenes xylosoxidans, Sci. Total Environ., 1995, 175, 275.
  • [18] KIM J.M., LE N.T., CHUNG B.S., PARK J.H., BAE J.-W., MADSEN E.L., JEON C.O., Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium Pseudoxanthomonas spadix BD-a59, Appl. Environ. Microbiol., 2008, 74, 7313.
  • [19] CHEN W.M., CHANG J.S., WU C.H., CHANG S.C., Characterization of phenol and trichloroethene degradation by the rhizobium Ralstonia taiwanensis, Res. Microbiol., 2004, 155, 672.
  • [20] RONEN Z., VASILUK L., ABELIOVICH A., NEJIDAT A., Activity and survival of tribromophenoldegrading bacteria in a contaminated desert soil, Soil Biol. Biochem., 2000, 32, 1643.
  • [21] MARTINEZ C.O., SILVIA C.M.M.S., FAY E.F., ABAKERLI R.B., MAIA A.H.N., DURRANT L.R., Microbial degradation of sulfentrazone in a Brazilian Rhodic Hapludox soil, Braz. J. Microbiol., 2010, 41, 209.
  • [22] FENG X., SIMPSON M.J., Temperature and substrate controls on microbial phospholipid fatty acid composition during incubation of grassland soils contrasting in organic matter quality, Soil Biol. Biochem, 2009, 41, 804.
  • [23] TSITKO I.V., ZAITSEV G.M., LOBANOK A.G., SALKINOJA-SALONEN M.S., Effect of aromatic compounds on cellular fatty acid composition of Rhodococcus opacus, Appl. Environ. Microbiol., 1999, 65, 853.
  • [24] MROZIK A., ŁABUŻEK S., PIOTROWSKA-SEGET Z., Whole cell-derived fatty acid profiles of Pseudomonas sp. JS150 during naphthalene degradation, Pol. J. Microbiol., 2005, 54, 137.
  • [25] GROGAN D.W., CRONAN J.E. Jr., Cyclopropane ring formation in membrane lipids of bacteria, Microbiol. Mol. Biol. Rev., 1997, 61, 429.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de82b0ec-3c1e-4717-95a6-1d0a1bc51e20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.