PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling and operational analysis of an automotive shock absorber with a tuned mass damper

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, the topic of energy dissipation efficiency of vehicle suspension dampers has become a research and engineering problem due to structural requirements of vehicle manufacturers and the introduction of electric/hybrid cars. By principle, any disturbances in the damping force generation process translate into pressure fluctuations to be then transferred to the body of the vehicle. The effect known as rattling within the damper engineering community is perceived as detrimental to ride comfort. To improve the performance of a vehicle damper several methods can be devised and used. One approach is to optimize the settings of the valves in the damper. The approach, however, often influences the force output of the damper. Another technique involves the application of add-on systems. One such system is the tuned mass damper concept originally developed by Frahm for structural engineering applications. In the paper the author proposes a damper concept equipped with an external/internal tuned mass damper component for improving the dynamic characteristics of vehicle dampers. The author presents modeling details followed by simulations of the damper with the tuned mass damper concept subjected to oscillatory inputs, and a critical analysis of the presented results.
Rocznik
Strony
243--251
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
autor
  • BWI Poland Technologies sp. z o.o., ul. Podgórki Tynieckie 2, 30-399 Kraków, Poland
Bibliografia
  • 1. Bayer H. (1993), Vibration damping supporting strut for a motor vehicle, patent US5263560
  • 2. Benaziz M., Nacivet S., Deak J., Thouverez F. (2013), Double tube shock absorber model for noise and vibration analysis, SAE International, 6(2), 1177-1185.
  • 3. Czop P., Sławik D. (2011) A high-frequency first-principle model of a shock absorber and servo-hydraulic tester, Mechanical Systems and Signal Processing, 25/6 1937–1955.
  • 4. Czop P., Sławik D., Śliwa P., Wszołek G. (2009), Simplified and advanced models of a valve system used in shock absorbers, Journal of Achievements in Materials and Manufacturing Engineering, 33(2), 173–180
  • 5. Dixon J.C. (2007), The shock absorber handbook, Professional Engineering Publishing Ltd and John Wiley and Sons, Ltd.
  • 6. Duym S., Steins R., Reybrouck K. (1997), Evaluation of shock absorber models, Vehicle System Dynamics, International Journal of Vehicle Mechanics and Mobility, 27(2), 109–127
  • 7. Ezzat Khalifa H., Xin L. (1998), Analysis of stiction effect on the dynamics of compressor suction valve, The International Compressor Engineering Conference, Prude University.
  • 8. Farjoud A., Ahmadian M., Craft M., Burke W. (2012), Nonlinear modeling and experimental characterization of hydraulic dampers: effects of shim stack and orifice parameters on damper performance, Nonlinear Dynamics, 67 1437–1456
  • 9. Frahm H. (1911) Device for damping vibration of bodies, patent US989958A.
  • 10. Gehrlich T., Horn G., Keller H.H., Schilling G., Lange D., Wagner E. (1992), Vehicle suspension, patent GB2258903.
  • 11. Kohlmeier H.H. (1992), Vibration absorber, patent EP0531766.
  • 12. Kruse A. (2002) Characterizing and reducing structural noises of vehicle shock absorber system, SAE Technical Report 2002-01-1234
  • 13. Kruse A. (2008), Analysis of dynamic pressure build-up in twin-tube vehicle shock absorbers with respect to vehicle acoustics, SAE International, Vehicle Dynamics Expo 2008, Stuttgart,
  • 14. Lang H.H. (1977), A study of the characteristics of automotive hydraulic dampers at high stroking frequencies, The University of Michigan.
  • 15. Shimizu K., Hiruma M. (1987), Frequency and stroke depending type damper, patent JPS62106138
  • 16. Trintignac C., Trema D. (1982), Shock absorber upper fastening, patent FR2535259
  • 17. Tsuruta M., Kawabe H., Kobayashi Y., Matsumoto S., Yoshida M. (1999), Vehicle suspension system, patent EP0992372
  • 18. Wang D.H., Liao W.H. (2011), Magnetorheological fluid dampers: a review of parametric modeling, Smart materials and Structures, 20(2), 023001.
Uwagi
Acknowledgment: This study was carried out within the scope of the project no. POIR.01.02.00-00-0305/16 funded by the National Center for Research and Development (Poland).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de7ad9cf-1e05-48aa-9f2e-ea68de9f504d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.