PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Generalizations of the fourth moment theorem

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Azmoodeh et al. established a criterion regarding convergence of the second and other even moments of random variables in a Wiener chaos with fixed order guaranteeing the central convergence of the random variables. This was a major step in studies of the fourth moment theorem. In this paper, we provide further generalizations of the fourth moment theorem by building on their ideas. More precisely, further criteria implying central convergence are provided: (i) the convergence of the fourth and any other even moment, (ii) the convergence of the sixth and some other even moments.
Rocznik
Strony
177--194
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
  • Kumamoto University 2-39-1, Kurokami Chuo-ku, Kumamoto 860-8555, Japan
Bibliografia
  • [1] E. Azmoodeh, S. Campese, and G. Poly, Fourth moment theorems for Markov diffusion generators, J. Funct. Anal. 266 (2014), 2341-2359.
  • [2] E. Azmoodeh, D. Malicet, G. Mijoule, and G. Poly, Generalization of the Nualart-Peccaticriterion, Ann. Probab. 44 (2016), 924-954.
  • [3] M. Ledoux, Chaos of a Markov operator and the fourth moment condition, Ann. Probab. 40 (2012), 2439-2459.
  • [4] P. D. Miller, Applied Asymptotic Analysis, Grad. Stud. Math. 75, Amer. Math. Soc., Providence, RI, 2006.
  • [5] I. Nourdin and G. Peccati, Stein’s method on Wiener chaos, Probab. Theory Related Fields 145 (2009), 75-118.
  • [6] I. Nourdin and G. Peccati, Normal Approximations with Malliavin Calculus, Cambridge Tracts in Math. 192, Cambridge Univ. Press, Cambridge, 2012.
  • [7] D. Nualart, The Malliavin Calculus and Related Topics, 2nd ed., Probab. Appl. (New York), Springer, Berlin, 2006.
  • [8] D. Nualart and S. Ortiz-Latorre, Central limit theorems for multiple stochastic integrals and Malliavin calculus, Stochastic Process. Appl. 118 (2008), 614-628.
  • [9] D. Nualart and G. Peccati, Central limit theorems for sequences of multiple stochastic integrals, Ann. Probab. 33 (2005), 177-193.
  • [10] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (eds.), NIST Handbook of Mathematical Functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC, and Cambridge Univ. Press, Cambridge, 2010.
  • [11] G. Peccati and C. A. Tudor, Gaussian limits for vector-valued multiple stochastic integrals, in: Séminaire de Probabilités XXXVIII, Lecture Notes in Math. 1857, Springer, Berlin, 2005, 247-262
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de78d406-f942-4022-8279-c0d685003a6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.