Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Osmotic energy created by salinity gradient is a novel energy source. The chemical potential difference of two liquids with dissimilar salinities can be used to generate a flow of water across a semi-permeable membrane. The Pressure-Retarded Osmosis (PRO) concept controls the flow of the water across the membrane and contributes to the production of electrical energy with a hydraulic turbine. This study describes a simple mathematical model for evaluating the effectiveness of application of the PRO process in a hydro-osmotic power plant. The influences of pressures and salt concentrations of the inlet streams as well as the concentration polarization across the membrane on the membrane power density and plant efficiency were investigated. The effects of liquid temperature and membrane characteristics (water and salt permeability) on power plant performance were also studied.
Czasopismo
Rocznik
Tom
Strony
395--405
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665, Warsaw, Poland
autor
- Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665, Warsaw, Poland
autor
- Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665, Warsaw, Poland
Bibliografia
- [1] S. Loeb, Production of energy from concentrated brines by pressureretarded osmosis: I. preliminary technical and economic correlations, Journal of Membrane Science 1 (1976) 49–63.
- [2] F. Helfer, C. Lemckert, Y. G. Anissimov, Osmotic power with pressure retarded osmosis: theory, performance and trends–a review, Journal of Membrane Science 453 (2014) 337–358.
- [3] T. Thorsen, T. Holt, The potential for power production from salinity gradients by pressure retarded osmosis, Journal of Membrane Science 335 (1) (2009) 103–110.
- [4] International Renewable Energy Agency: Salinity gradient energy, Ocean Energy Technology Brief 2, June 2014.
- [5] P. Stenzel, H. Wagner, Osmotic power plants: Potential analysis and site criteria, in: 3rd International Conference on Ocean Energy, October, Vol. 6, 2010.
- [6] K. Saito, M. Irie, S. Zaitsu, H. Sakai, H. Hayashi, A. Tanioka, Power generation with salinity gradient by pressure retarded osmosis using concentrated brine from swro system and treated sewage as pure water, Desalination and Water Treatment 41 (1-3) (2012) 114–121.
- [7] T. Y. Cath, A. E. Childress, M. Elimelech, Forward osmosis: principles, applications, and recent developments, Journal of membrane science 281 (1) (2006) 70–87.
- [8] N. Y. Yip, M. Elimelech, Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis, Environmental science & technology 46 (9) (2012) 5230–5239.
- [9] N. Y. Yip, A. Tiraferri, W. A. Phillip, J. D. Schiffman, L. A. Hoover, Y. C. Kim, M. Elimelech, Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients, Environmental science & technology 45 (10) (2011) 4360–4369.
- [10] J. W. Post, J. Veerman, H. V. Hamelers, G. J. Euverink, S. J. Metz, K. Nymeijer, C. J. Buisman, Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis, Journal of membrane science 288 (1) (2007) 218–230.
- [11] D. Brogioli, Extracting renewable energy from a salinity difference using a capacitor, Physical review letters 103 (5) (2009) 058501.
- [12] Statkraft Technology, Statkraft Energy Sources. URL www.statkraft.com/energy-sources/osmotic-power/technology.
- [13] R. L. Stover, Development of a fourth generation energy recovery device. a ‘cto’s notebook’, Desalination 165 (2004) 313–321.
- [14] K. Gerstandt, K.-V. Peinemann, S. E. Skilhagen, T. Thorsen, T. Holt, Membrane processes in energy supply for an osmotic power plant, Desalination 224 (1-3) (2008) 64–70.
- [15] Membrane Filtration. URL www.sswm.info/content/membrane-filtration
- [16] A. Naghiloo, M. Abbaspour, B. Mohammadi-Ivatloo, K. Bakhtari, Modeling and design of a 25 mw osmotic power plant (pro) on bahmanshir river of iran, Renewable Energy 78 (2015) 51–59.
- [17] A. Achilli, T. Y. Cath, A. E. Childress, Power generation with pressure retarded osmosis: An experimental and theoretical investigation, Journal of membrane science 343 (1) (2009) 42–52.
- [18] G. Schock, A. Miquel, Mass transfer and pressure loss in spiral wound modules, Desalination 64 (1987) 339–352.
- [19] R. L. McGinnis, J. R. McCutcheon, M. Elimelech, A novel ammonia–carbon dioxide osmotic heat engine for power generation, Journal of membrane science 305 (1) (2007) 13–19.
- [20] C. Fritzmann, J. Löwenberg, T. Wintgens, T. Melin, State-of-the-art of reverse osmosis desalination, Desalination 216 (1-3) (2007) 1–76.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de76525e-0e0d-439d-95b3-b5842963434b