PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On implementation of FFT processor in XILINX FPGA using high-level synthesis

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents results of the high level synthesis of an 1024-point radix-2 FFT processors in Xilinx Vivado FPGA environment. The use of various directives controlling the synthesis process is examined. The results indicate that using the proper set of directives the latency of the processor can be reduced by 95% from about 35k for the default parameters to 1.5k cycles after optimizations.
Rocznik
Tom
Strony
17--33
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
autor
  • Państwowa Wyższa Szkoła Zawodowa w Elblągu
Bibliografia
  • [1] Brigham E.O., The Fast Fourier Transform and its Applications, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1988.
  • [2] Brandwood D., Fourier Transforms in Radar and Signal Processing, Artech House, 2003.
  • [3] Rabiner L.R., Gold B., Theory and Application of Digital Signal Processing, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1975.
  • [4] Oppenheim A.V., Schafer R.W., Digital Signal Processing, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1975.
  • [5] Oppenheim A.V., Schafer R.W., Discrete-Time Signal Processing. Third Edition, Prentice-Hall, 2009.
  • [6] McClellan J.H., Purdy R.J., Applications of Digital Signal Processing. Prentice-Hall, 1978, (ch. 5, Applications of Digital Signal Processing to Radar).
  • [7] Hwang T., Yang C., Wu G., Li S.G., Li Y., OFDM and Its Wireless Applications: A Survey, IEEE Transactions on Vehicular Technology, Volume 58, Number 4, May 2009, pp. 1673-1694.
  • [8] Chikada Y. et. al., A very fast spectrum analyzer for radio astronomy, International Conference on Acoustics, Speech and Signal Processing, Tokyo, 1986, pp. 2907-2910.
  • [9] Brezinski M.E., Optical Coherence Tomography: Principles and Applications, Elsevier, 2006.
  • [10] Cooley J.W., Tukey J.W., An algorithm for the machine calculation of complex Fourier series, Mathematics of Computation., Volume 19, pp. 297–301, 1965.
  • [11] Abari O., Hamed E., Hassanieh H., Agarwal A., Katabi D., Chandrakasan A.P., Stojanovic V., A 0.75-millionpoint fourier-tranform chip for frequency-sparse signals, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 458–460, Feb. 2014.
  • [12] Hopkinson T.M., Butler M., A pipelined high-precision FFT architecture, Mitre Corp.,1992.
  • [13] Virtex-7, Xilinx, Inc., 2020.
  • [14] Stratix IV, Altera Inc., 2014.
  • [15] Texas Instruments, 6000TM high-performance and power efficient DSP, 2020.
  • [16] Fialka O., Cadik M., FFT and convolution performance in image filtering on GPU, 10th Conference on Information Visualisation, 5-7 July, London, UK.
  • [17] Bergland G.D., Fast Fourier Transform Hardware Implementations -A Survey, IEEE Transactions on Audio and Electroacoustics, Volume AU-17, Number 2, June 1969, pp. 109-119.
  • [18] Wold E.H., Despain A.M., Pipeline and parallel-pipeline FFT processors for VLSI implementations, IEEE Transactions on Computers, Volume C-31, Number 5, pp. 414–426, May 1984.
  • [19] Despain A.M., Fourier transform computers using CORDIC iterations. IEEE Transactions on Computers., Volume C-23, pp. 993-1001, Oct. 1974.
  • [20] Swartzlander E.E., Young W.K.W, Joseph S.J., A radix-4 delay commutator for fast Fourier transform processor implementation, IEEE Journal. Solid-State Circuits, Volume 19, Number 5, pp. 702–709, Oct. 1984.
  • [21] Bi G., Jones E.V., A pipelined FFT processor for word-sequential data. IEEE Transactions on Acoustics, Speech and Signal Processing, Volume 37, Number 12, pp. 1982-1985, Dec. 1989.
  • [22] Bidet E., Castelain D., Jaoanblanq C., Stenn P., A fast single chip implementation of 8192 complex point FFT, IEEE Journal of Solid-State Circuits., Volume 30, Number 3, pp. 300-315, March 1995.
  • [23] Swartzlander Jr E.E, Systolic FFT processors: A Personal Perspective, Journal of Signal Processing Systems, Number 53, pp. 3-14, 2008.
  • [24] He S., Torkelson M., A new approach to pipeline FFT processor, in; Proceedings of the 10th Parallel Processing Symposium, IPPS’96, pp. 766-770, April 1996.
  • [25] He S., Torkelson M., Design and implementation of a 1024-point pipeline FFT processor, in: Proceedings of the IEEE Custom Integrated Circuits Conference, May 1998, pp. 131–134.
  • [26] Cores A., Velez I., Sevillano J.F.,rk Radix FFTs matrical representation and SDC/SDF implementation, IEEE on Signal Processing, Volune 57, Number 7, pp. 2824-2839, July 2009.
  • [27] Liu H., Lee H., A high performance four-parallel 128/64-point radix-24 FFT/IFFT processor for MIMO-OFDM systems, in: Proceedings of IEEE Asia Pacific Conference on Circuits and Systems, 2008, pp. 834–837.
  • [28] Cho S.-I., Kang K.-M., Choi S.-S., Implementation of 128-point fast Fourier transform processor for UWB systems, in: Proceedings of International Wireless Communication&Mobile Computing Conference, 2008, pp. 210–213.
  • [29] Liu L., Ren J., Wang X., Ye F., Design of low-power, 1GS/s throughput FFT procesor for MIMO-OFDM UWB communication system, in: Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 2594–2597, May 2007.
  • [30] Sanchez M.A., Garrido M., Lopez M.L., Grajal J., Implementing FFT-based digital channelized receivers on FPGA platforms, IEEE Transactions on Aerospace and Electronic Systems, Volume 44, Number 4, pp. 1567–1585, Oct. 2008.
  • [31] Lee J., Lee H., Cho S., Choi S.-S., A high-speed, low-complexity radix-2 4 FFT procesor for MB-OFDM UWB systems, in: Proceedings of the IEEE International Symposium on Circuits and Systems, 2006, pp. 210–213.
  • [32] Lin Y.-W., Lee C.-Y., Design of an FFT/IFFT processor for MIMO OFDM systems, IEEE Transactions on Circuits and Systems I, Volume 54, Number. 4.
  • [33] Xudong W., Yu L., Special-purpose computer for 64-point FFT based on FPGA, in: Proceedings of the International Conference on Wireless Communication and Signal Processing, 2009, pp. 1–6.
  • [34] Liu S., Liu D., A High-Flexible Low-Latency Memory-Based FFT Processor for 4G, WLAN and Future 5G, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Volume 27, Number 3, pp. 511-523, March 2019.
  • [35] Tang S.-N., Tsai J.-W., Chang T.-Y., A 2.4-GS/s FFT processor for OFDM-based WPAN applications, IEEE Transactions on Circuits and Systems I, Volume 57, Number 6, pp. 451–455, June 2010.
  • [36] Li S., Xu H., Fan W., Chen Y., Zeng X., A 128/256-point pipeline FFT/IFFT procesor for MIMO OFDM system IEEE 802.16e, in :Proceedings of the IEEE International Symposium on Circuits and Systems, June 2010, pp. 1488–1491.
  • [37] Yang L., Zhang K., Liu H., Huang J., Huang S., An efficient locally pipelined FFT processor, IEEE Transactions on Circuits and Systems II, Volume 53, Number 7, pp. 585–589, July 2006.
  • [38] Cheng C., Parhi K.K., High-throughput VLSI architecture for FFT computation, IEEE Transactions on Circuits and Systems II, Volume 54, Number 10. 10, pp. 863–867, Oct. 2007.
  • [39] Chang Y.-N., An Efficient VLSI Architecture for Normal I/O Order Pipeline FFT Design, IEEE Transactions on Circuits and Systems II, Volume 55, Number 12, pp. 1234–1238, Dec. 2008.
  • [40] Garrido M., Parhi K.K., Grajal J., A pipelined FFT architecture for real-valued signals, IEEE Transactions on Circuits and Systems I, Volume 56, Number 12, pp. 2634–2643, Dec. 2009.
  • [41] Garrido M., Grajal J., Gustafsson O., Optimum circuits for bitreversal, IEEE Transactions on Circuits and Systems II, Volume 58, Number 10, pp. 657–661, Oct. 2011.
  • [42] Garrido M., Gustafsson O., Grajal J., Accurate rotations based on coefficient scaling, IEEE Transactions on Circuits and Systems II, Volume 58, Number 10, pp. 662–666, Oct. 2011.
  • [43] Duan B., Wang W., Li X. , Zhang C., Zhang P., Sun N., Floating-point mixed- radix FFT core generation for FPGA and comparison with GPU and CPU, 2011 International Conference on Field-Programmable Technology (FPT), pp. 1–6, Dec. 12-14, New Delhi, India, 2011.
  • [44] Huang S.-J., Chen S.-G., A high-throughput radix-16 FFT processor with paralel and normal input/output ordering for IEEE 802.15.3c systems, IEEE Transactions on Circuits and Systems I, Volume 59, Number 8, pp. 1752–1765, Aug. 2012.
  • [45 ] Wang Z., Liu X., He B., Yu F., A combined SDC-SDF architecture for norma I/O pipelined radix-2 FFT, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Volume 23, Number 5, pp. 973–977, May 2015.
  • [46] Wang M., Wang F., Wei S., Li Z., A pipelined area-efficient and high-speed reconfigurable processor for floating-point FFT/IFFT and DCT/IDCT computations, Microelectronics Journal, Volume 47, pp. 19–30, 2016.
  • [47] Garrido M., Huang S.-J., Chen S.-G., Gustafsson O., The serial commutator (SC) FFT, IEEE Transactions on Circuits and Systems II, Volume 63, Number 10, pp. 974–978, Oct. 2016.
  • [48] Altera, Radar Processing: FPGA or GPU, Altera Corp. 2013.
  • [49] Parker M. Radar Basics-Part 3, Beamforming and radar digital processing, Altera Corp., 2011
  • [50] Centar LLC, FFT Circuitry for 4G Age, 2018, www.centar.net.
  • [51] Vivado Design, Xilinx Inc., 2020.
  • [52] Intel® FPGA SDK for OpenCL, Intel. Corp., 2020.
  • [53] Xilinx, Fast Fourier Transform v9.1 LogiCORE IP Product Guide, May 22, 2019.
  • [54] Intel FFT IP MegaCore 17.1, Nov.2017.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de763bc1-d8c6-4c9b-9c93-e7a8392665b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.