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The paper presents results of the high level synthesis of an 1024-point radix-2 FFT 
processors in Xilinx Vivado FPGA environment. The use of various directives controlling 
the synthesis process is examined. The results indicate that using the proper set of direc-
tives the latency of the processor can be reduced by 95% from about 35k for the default 
parameters to 1.5k cycles after optimizations. 
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1. INTRODUCTION 
 

Discrete Fourier Transform (DFT) [1-5] is one of the most important algo-
rithms in digital signal processing (DSP). The DFT transforms an input sequence 
of sampled data and produces its frequency content. The inverse transform IDFT 
perfoms the reverse operation. The DFT is needed in various areas of science and 
technology. Doppler processing and matched filtering in radars [6] belong to the 
most demanding algorithms with respect to the short calculation time and accu-
racy. Other applications can be found in the physical layer of orthogonal fre-
quency-division multiplexing systems(OFDM) [7], where the frequency content 
has to be converted to the time domain. Other exemplary applications encompass 
spectral analysis[3, 5], signal synthesis and radiotelescopes, where the spectrum 
of radio frequency signals from celestial objects is analyzed [8], and tomography 
image reconstruction [9]. The DFT calculation using its definition is generally not 
possible in the real-time because of the computational complexity of the DFT 
equal to O(N2), where N is the transform length. The direct calculation of the DFT 
calls for N2 complex multiplications and N2 complex additions and can be com-
puted in real-time only for small N, eg. for N ≤ 32. The breakthrough with respect 
to computational complexity came in 1965 due to the invention of the Fast Fourier 
Transform (FFT) by Cooley and Tukey [10], where the computational complexity 
was reduced to O(N kog N) for N = 2n. This means that for N = 1024 instead of 
1048576 complex multiplications for the DFT, the FFT requires only 5120. Nev-
ertheless the only way to cope with the real-time calculation requirement is the 
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use of specialized FFT processors. Their parameters have been limited by the 
available IC technology. The FFT can be calculated using various FFT processors 
in dependence upon the requirements with respect to speed and accuracy. Proba-
bly the highest requirements for both factors exist in radar systems. The urgent 
need for the fast FFT calculation in radars led already in the second half of sixties 
of the XXth century to the implementation of specialized hardware FFT proces-
sors. The hardware multiplier was the crucial component and the main stumbling 
block in these processors. Such multiplier was relatively costly because, for ex-
ample, the parallel matrix 16x16-bit multiplier  can be built using the equivalent 
of 290 full-adders (FA), that corresponds typically to 9280 transistors, hence the 
complex multiplier would need 37120 transistors and four 16-bit adders, that for 
ripple-carry adders would add 64 FA(1984 transistors) which gives in total 39104 
transistors. These figures made the implementation of FFT processors difficult 
and expensive until the mid 80's of XXth century.  Principally an FFT processor 
may use input data in the form of segments or there is a constant inflow of data in 
real-time. The starting point of an FFT  processor design is its specification. The 
main properties are N, which is typically 1024 points but the transform size may 
extend from 64 through  64K to 0.75 106 points [11], the dynamic range of the 
input signal from 12 to 32 bits [12], latency, L even under 1 μs, accuracy and 
power consumption. The required parameters determine the choice of fixed-point 
two’s complement, block-floating, floating-point or residue arithmetic. The la-
tency determines the maximum frequency of the input signal that can be pro-
cessed. Nowadays four main approaches to the implementation are possible: Ap-
plication Specific Circuits(ASICs), field programmable gate arrays(FPGAs). 
standalone digital signal processors(DSP) with/or without hardware accelerator 
and general-purpose Graphic Processing Units(GPU). ASICs allow to attain the 
assumed short FFT execution time and fulfil the design goals. The ASIC design 
is expensive and may be time-consumming, moreover, ASICs can not be modified 
when needed. FPGAs in their early stage were about ten times slower than ASICs 
so they could serve only as the prototyping platform. The advantages of FPGAs 
include the shorter design time and lower costs compared with ASICs. The pro-
gress in FPGAs is due not only to the increase in the number LUTs and the clock-
ing frequences exceeding several hundred MHz[13, 14], but the main innovation 
was the introduction of DSP units that contain 18x18 bit or 18x24 bit multipliers 
with their number up to 2048 [13]. In FPGAs an FFT processor can be imple-
mented using one of the three approaches: the description of the structure in the 
VHDL or Verilog, using FFT cores supplied by FPGA manufacturers or the high-
level synthesis(HLS). The HLS allows to describe the FFT algorithm in the spe-
cially adapted C language version. The several variants of the C FFT program can 
be examined with respect to the use of the FPGA resources, latency and pipelining 
rate. The digital signal processors have been used extensively for the FFT compu-
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tation since 90’s of XXth. The representative example can be TMS320C6678 pro-
cessor from the Texas Instruments C6000 family [15]. GPUs can be especially 
useful for multidensional FFTs, an example of the GPU is described in [16]. First 
designs of FFT processors appeared shortly after the FFT algorithm was published 
in 1965. Bergland [17] in 1969 presented the features of over twenty existing at 
that time hardware FFT processors. The processor architecture, type of arithmetic 
used and performance system and cost were shown. Most of these processors were 
produced by research laboratories, such as Bell Laboratories, Stanford Research 
Institute, MIT Lincoln Laboratory for specific applications, especially radars. As 
a standard measure to compare individual processors was the execution time for 
1024-point complex FFT. The speed range was from 1 ms for the MM DSP of 
Emerson Electric (only designed) to 600 ms for the CSS-3 of Computer Signal 
Processors, Inc. Typically, the execution time for a 1024-point complex FFT was 
in the tens of milliseconds (22-56 ms). The technology used was Medium Scale 
of Integration(MSI) or ECL (Emmiter Coupled Logic). Over a decade of 70’s sev-
eral FFT processors architectures were presented [18-22]. Many special purpose 
high-speed FFT processors have been built by various research laboratories and 
in the industry. However, neither their technical characteristics were available nor 
processors which could be applied to real-time radar signal were commercially 
accesible. Commercially available FFT processors usually took the form of an 
array processor. Array processors have high flexibility and tend to be software 
orientated. Examples of these processors include the Floating Point System, Inc. 
(FPS) family of array processors. FPS AP-120B processor, available in 1976, was 
a 38-bit pipeline-oriented array processor. It was designed to be attached to a host 
computer such as a DEC PDP-11 as an hardware accelerator. Data transfer was 
accomplished using the direct memory access. The execution time for a 1024-
point complex FFT was 5 msec. Another example could be Star ST-50 array pro-
cessor developed by Star Technologies Inc. in 1986 with 50 MFLOPs and the 
TASP array processor developed by ESE. The throughput rates of these proces-
sors  ranged from 25 MFLOPs for an AP-120B to over 100 MFLOPs for the TASP 
which could calculate the 1024-point complex FFT in 800 μs. Families of IC chips 
specially designed for FFT processing were available from a device manufacturers 
such as AM29500 family by Advanced Micro Devices and the Weitek family sig-
nal processing ICs. These devices could be used to form the building blocks of  
a high-speed FFT processor for real-time radar applications. However, the cost of 
these devices was high. Also in 1980 first NEC μ7720 digital signal processor 
became available. A good example of the progress in FFT processors is given in 
[23] where the Modular Transform Processor that computed the 4096-point FFT 
and IFFT was built by TRW, Inc. in 1982-1984. It operated in a pipeline fashion 
at a clock rate of 10 MHz. Six large circuits boards were used that dissipated about 
1200W. Each board contained 200 integrated circuits. Two decades after an FFT 
processor for the same transform size was built by Mayo Foundation in 2002–
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2003. The Mayo single-chip 4096-point ASIC FFT processor was manufactured 
using 0.25μm CMOS, could be clocked at 100 MHz and consummed 2.6 W. 
Cuurently the most effective approach to the FFT processor design is the use of 
pipelined architectures. In principle there exist four basic types of pipelines archi-
tectures: for radix-2 Multi-path Delay Commutator(R2MDC) [3], Single-path De-
lay Feedback(R2SDF) [18], and for radix-4 R4SDF [19], R4MDC [3, 20], R4SDC 
[21, 22]. In [22] the largest single-chip FFT processor ever built was presented. 
But the most effective with respect to the number of complex multiplications is 
the radix-22 Single-path Delay Feedback(R22SDF) architecture presented in  
[24–25]. Next, radix-23 and radix-24 architectures which enable certain complex 
multipliers to be simplified, were also elaborated. A description and explanation 
of radix-2k SDF architectures is given in [26]. Recent works in FFT processors 
concentrated mainly on their applications to OFDM and UWB [27–36]. Other 
works encompass various problems of the FFT processor implementation [37–
47]. In the current decade the tendency can be observed of implementing FFT 
processors in FPGA structures. Altera’s Stratix 5SGSD8A [48] 28 nm chip al-
lowed to calculate 4096-point FFT in fixed-point in 12.04 μs, whereas for 1024-
point FFT [49] using Stratix V 5SGS D5 3.31μs was attained. Centar LLC [50] 
reports in 2018 that using Intel’s Arria 10 and the proprietary FFT core it was 
possible to compute the fixed-point 1024-point FFT in 1.92 μs and for IEEE 754 
in 1.79μs. However, the design of an FPGA FFT processor is still a complex task. 
It involves not only timing requirements but the choice of the binary representa-
tion length of intermediate results and Wnk and also the interstage scaling proce-
dures. When using an FFT core the suitable choice is usually possible. The design 
description in the VHDL or Verilog is complex and poses a serious obstacle. This 
problem can be partially relieved by using tools termed High Level Synthesis 
(HLS), such as Xilinx HLS [51] or Altera’s(Intel's) OpenCL [52]. The aim of this 
work is to show exemplary results of the HLS of an FFT processor and examine 
the possible ways to improve the properties of the design. In Section 2 the FFT 
algorithm is reviewed, and in Section I3 strategies are considered to improve the 
properties of the FFT processor design, and in Section 4 the exemplary implemen-
tations of the FFT processor using the HLS synthesis are shown.   

 
2. FFT ALGORITHM DESCRIPTION 

 
The Discrete Fourier Transform has the following form 

1
0( ) ( )N kn

n NX k x n W−
== Σ ⋅  for 0,1,..., 1.k N= −       (1) 

The computation of the DFT requires 2( )O N  complex multiplications and ad-
ditions. In order to make the DFT calculations more efficient, the following prop-
erties of coefficients (2 / )kn j N kn

NW e π−=  can be used: symmetry 
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/2k N k j k
N N NW W e Wπ+ = − = , periodicity k N k

N NW W+ =  and recursion 2
/2N NW W= . By 

taking advantage of these properties we can decompose sequence x(n) into the 
shorter sequences. Such approach is called the decimation-in-time (DIT) algo-
rithm. The DIT principle can be presented by considering a special case when N 
is the power of 2. Since N is an even number, we can determine X(k) by dividing 
the sequence x(n) into two (N/2) - point sequences containing even and odd ele-
ments of x(n). In case of X(k) given by (1) we have two sequences  
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where  
2 2 (2 / ) (2 /( /2))
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Finally, the equation (3) can be written in the following form 
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The basic DFT operation is called the butterfly (Fig. 1) and has the followig form  
1
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If we substitute /2 2 (2 / ) /2 1N j N N j
NW e eπ π− −= = = − into (6) we get 
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Fig. 1. Basic flow graph of butterfly calculation 

The radix-2 FFT equation (5) decomposes the DFT into two smaller DFTs. Each 
of the smaller DFTs is then further decomposed into smaller ones. The full struc-
ture consists of 2log N  stages and each stage consists of N/2 butterflies (Fig. 2). 
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Each butterfly (7) performs two additions for the input data and one multiplication 
by the twiddle factor. 
 

 
Fig. 2. 8-Point DIT-Radix2-FFT 

 
The other popular algorithm is the radix-4 FFT, which is more efficient than the 
radix-2 FFT. The radix-4 FFT equation (8) is listed below 
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From the definition of the twiddle factors we obtain 3 /4k N k
NW j= , /2 ( 1)kN k

NW = − , 
/4 ( )kN k

NW j= − . After substituting the values into (8) we have the final form 
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The radix-4 FFT in (8) in the simplified form combines two stages of a radix-2 
FFT into one. As the result the number of required stages is halved. Since the 
radix-4 FFT requires fewer stages and butterflies than the radix 2 FFT, the com-
putations of FFT can be further improved. For example, to calculate the 16-point 
FFT, the radix-2 requires 216 4log =  stages but the radix-4 only 416 2log =  
stages. 
 

3. STRATEGIES TO IMPROVE PERFORMNCE USING HLS 
 
 FPGAs are the very attractive platform for high-speed digital signal pro-
cessing, especially for radar technology [48, 49] but the implementation of the 
demanding signal processing algorithms as the FFT in the real time is complex 
because firstly the circuit structure must be designed and next implemented at the 
register-transfer level (RTL) using a hardware description language (HDL) such 
as VHDL and then synthesized and tested in the FPGA chip. However, do exists 
FFT IP cores, for example Xilinx [53] or Intel [54], but their configuration is dif-
ficult because of the required in-depth knowledge of the FFT core processor struc-
ture and arithmetic properties. This may make difficult the choice between the 
FPGA and digital signal processor such as TMS320C66x [15]. In order to simplify 
the design and implementation process the algorithmic approach was introduced 
by FPGA manufacturers. This approach is becoming more and more popular now-
adays due to the accelerated design time and time-to-market (TTM). Large hard-
ware projects pose major challenges in the design and verification of hardware at 
the HDL level. An increasing trend is observed as moving towards hardware ac-
celeration to enhance performance of CPU-intensive tasks. It can be offloaded to 
hardware accelerator in FPGA. The HDL synthesis can be performed using be-
havioral or structural descriptions with Verilog or VHDL. In general, the design 
of complex digital systems using these languages is laborious and difficult. In or-
der to make the design process faster and more effective the design methods are 
known that make use of C-based languages. The digital system description in this 
case has the form of a program in one of such languages. However, the program 
must have the form that could be translated into the register transfer level 
(RTL)form. With the HLS tool, as Xilinx Vivado HLS, an algorithmic description 
written in C-based language that maps the design flow, can be converted into the 
RTL form. During this conversion the control and dataflow structures from the 
source code are extracted. The key attributes of C-based code are functions, argu-
ments of the top-level function (the interface), data types and loops.  The way they 
are handled can have the significant impact on the area and performance. Also the 
translation of arrays and operators has considerable influence on the form of RTL 
description. Various implementations are possible when using the same source as 
a starting point. For example, it is possible to obtain as a result smaller or faster 
designs or nearly optimal designs. In the Xilinx HLS this can be done during the 



24  Robert Smyk, Maciej Czyżak 
 
design exploration using dedicated directives applied to critical fragments of the 
source code. However, the HLS synthesizer has the certain initial configuration 
options to be used to match the C code to the dedicated FPGA structure, after-
wards the use of special preprocessor directives in critical places to improve the 
efficiency of implementation may be needed in the testing and startup phase of 
the design in HLS. 
 In the following we shall discuss the basic principles of the HLS optimization 
methodology. The most important steps can be summarized as: the determination 
of the interfaces, the application of the pipelining to the design, the addressing the 
issues the which could prevent the optimal pipelining by optimizing data struc-
tures and then consider any latency and area problems.  
 The form of C-function signature determines I/O of the circuit. The type of the 
I/O is a key factor to determine what kind of hardware implementation can be 
achieved by synthesis. It is recommended in the Vivado HLS to use the INTER-
FACE directive to specify how RTL ports are created from the function signature. 
This step should be considered yet before going over to the optimization of the 
design.  

One of the main performance factors are latency and throughput. The latency 
of the design is the number of cycles it takes to output the result. The throughput 
of the design is the number of cycles between accepting two succeeding inputs. If 
there is no concurrency in the design the throughput and the latency are the same. 
Let us consider the example as in Fig. 3. Without the optimization the top task 
f_top() has a latency of 8, the tasks f_A() / f_C() of 3 and the task f_B() 
of 2 clock cycles (Fig 4a). If the data flow optimization is applied we can reduce 
the throughput to 3 cycles (Fig. 4b). This example uses functions as a tasks, but 
this kind of optimization can be performed in the same way between functions, 
between functions and loops, and between loops. In the C-based language the 
function call denotes the jump to the function code, its execution and possible 
return to the caller. However, in the HLS such function calls translate to the sep-
arate circuit structure that performs the respective tasks. 
 

 
Fig. 3. An example of the HLS code 
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Fig. 4. Optimization scheme of data flow in the HLS design 

 
The latency minimization in the Vivado HLS is done by default and throughput 

is prioritized above latency. Additionally the HLS offers four directives to achieve 
the required pipeline performance: PIPELINE, DATAFLOW, RESOURCE and 
configuration of config profile. The PIPELINE directive reduces the initiation in-
terval by allowing the concurrent execution of operations within a loop or func-
tion. The DATAFLOW can be used to minimize interval and enables task level 
pipelining by allowing the concurrency of internal functions and loops operations. 
The RESOURCE directive specifies the choice of the specific resource that will 
be used to implement an array, arithmetic operation, or function argument in the 
RTL. There are several rules that govern the efficiency of pipelining strategies. 
For example, if the design uses sub-functions and  the sub-functions should be 
pipelined, it should be explicitly imposed using the appropriate pipelining di-
rective. Otherwise the non-pipelined functions could be the bottleneck. Another 
example are some functions and loops that contain internal loops. The PIPELINE 
directive automatically unrolls all loops in the nested hierarchy, which in the case 
of the multilevel nesting can lead to a complicated structure. But it may be more 
reasonable to use this directive to pipeline the loops that need pipelining. Loops 
that contain certain bounds imposed on variables cannot be unrolled. Moreover, 
any loops that contain such loops can be unrolled. In order to achieve better per-
formance the DATAFLOW directive can be used or alternatively we have to mod-
ify the loop to remove variable bound. 

The default option in the HLS is to enforce parallelism. Therefore, the tasks 
(functions) are scheduled to start as soon as they can and they are synthesized to 
execute in parallel. It looks slightly different for the loop which are by default 
executed sequentially. Note that Vivado HLS automatically performs latency op-
timizations during synthesis, but there are certain additional directives to control 
it. The LATENCY directive allows to set up  latency boundaries in advance, the 
LOOP_FLATTEN and LOOP_MERGE directives allow for loop merging and 
flattening, and UNROLL directive provides the loop unrolling. Summarizing thus 
far, we would like to show a short benchmark. In Fig. 5 the source code of the 
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exemplary top-level function mtrx_el_mul() created for the performance op-
timization analysis is shown. 

 

 
Fig. 5. Source code of mtrx_el_mul() for performance optimization analysis 

 
After the directive LOOP_FLATTEN was used the performance is the same 

as before optimization (Tab. 1, Tab. 2), since the Vivado synthesizer flattens loops 
by default. The application of both the PIPELINE and UNROLL directives to l2 
and l3 in our case did not increase the throughput. The synthesizer removed the 
PIPELINE because the loops are completely unrolled. It is worth to mention, that 
after applying more optimization directives the HLS the compilation time in-
creased several times. 

 
Table 1. Performance analysis of mtrx_el_mul() with optimization. 

 
Optimization Latency [clk] Interval [clk] 

Default 14953 14954 
L3 unrolled 2409 2410 
L1-L3 unrolled 393 394 
Pipelined 393 394 

 
Table 2. Hardware analysis of mtrx_el_mul() with optimization. 
 

Optimization BRAM_18K DSP48E FF LUT 
Default 0 1 385 266 
L3 unrolled 0 1 176 131 
L1-L3 unrolled 0 784 12938 37708 
Pipelined 0 784 12938 37708 
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Concluding it should be remarked that in the HLS only a subset of type and 
grammar constructs of C-code is allowed. As the data types the primitive types 
like unsigned char, unsigned short int, unsigned int long with their signed coun-
terparts and real types float and double can be applied. In the HLS the arbitrary 
precision integer and floating-point types are preferred. These data types allow for 
the implementation of bit vectors with selected lengths. 

 
4. IMPLEMENTATIONS OF FFT PROCESSOR USING HIGH 

LEVEL SYNTHESIS 
 

As the part of this study a 1024-point radix-2 FFT algorithm has been imple-
mented. The C source code has been tested and synthesized in the Xilinx Vivado 
HLS 2018.1 environment. We used the Virtex-7 xc7vx485tffg1761 FPGA. The 
structure of the implemented program includes a top function (Fig.6) representing 
the data input and output interface by the six parameters list, consisting of two 
arrays for real and imaginary parts of coefficients, two arrays for real and imagi-
nary parts of input samples and the same for output samples. In the case when 
specific I/O interface has not been specified the HLS synthesizer treats arrays as 
buffers. It is worth to note that AXI is the standard interface for data entry in 
Xilinx FPGAs to realize interconnections between building blocks inside the sys-
tem. Here, the FFT processor was synthesized in two versions, using the AXI in-
terface and without it. The top function implements the full mechanism for per-
forming butterfly operations. The single butterfly operation requires the imple-
mentation of the algorithm given in Fig. 6. The full FFT structure was imple-
mented in the form of ten blocks with each of them representing the consecutive 
layer of the FFT algorithm. In every layer two nested loops are used to generate 
the connections between 512 butterflies (Fig. 7). 

 

 
Fig. 6. Block diagram of FFT radix-2 butterfly procedure 
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Fig. 7. Block diagram of FFT Radix-2 procedure 

 
The synthesis results show that for implementation with default HLS optimi-

zations (Fig. 9) the serial hardware structure utilizes four DSP48 multipliers and 
the proper number of adders. The structure has the highest latency of about 3500 
clock cycles (Tab.3) but calls for the lowest hardware amount. After defining the 
AXI interface in the FFT processor structure and application of the pipelining but 
without loop unrolling we reduced the latency to about 15000 clock cycles (Tab. 
3). It should be noted that AXI interface implementation consumes about 4000 
cycles in our case and introduces the need for memory blocks (BRAM_18K) with 
total increase of required hardware amount (Fig. 9). Finally, after applying of 
pipelining and loop unrolling (Fig. 10) the hardware amount requirements 
strongly increased with utilization of 65% LUTs and 774 DSP48 blocks of all 
resources of the given FPGA chip.  
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Fig. 8. Synthesis utilization estimates for FFT Radix-2 with default optimization 

(Virtex-7 xc7vx485tffg1761) 
 

 
Fig. 9. Synthesis utilization estimates for FFT Radix-2 with without loop unrolling,  

with pipelining and AXI interface (Virtex-7 xc7vx485tffg1761) 
 

 
Fig. 10. Synthesis utilization estimates for FFT radix-2 with loop unrolling, 

 pipelining and AXI interface (Virtex-7 xc7vx485tffg1761) 
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Table 3. Performance analysis of 1024 FFT radix-2 with optimization. 

 
Optimization Latency [clk] 

Default 35846 
1st stage loop unrolling 33804 
Pipelining without unroll (AXI) 14614 
Pipelining without unroll (without AXI) 11285 
Pipelining, unrolling (AXI) 1561 

 
5. CONCLUSIONS 

 
The paper presents the results of the use of high level synthesis for implemen-

tation of radix-2 FFT processors using Xilinx Vivado HLS tool. The various op-
tions of the design flow were examined in order to identify the proper set of di-
rectives that would lead to possibly fast implementation of the FFT processor. It 
was stated that the optimal choice is the use of pipelining and along  with the 
proper form of loop unrolling. Such approach substantially reduces the latency of 
the processor from 35k cycles when default options are used to about 1.5 k cycles. 
It means that 1024-point FFT transform calculation for 500MHz clock without the 
bit reversal would require about 3µs. 
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