PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on the application of elliptic cross-section matrices for axial high gradient magnetic separation: key considerations for optimization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To reveal the key optimization considerations for the application of elliptic cross-section matrices in axial high gradient magnetic separation (HGMS), the performance of circular and elliptic matrices was investigated experimentally and theoretically, providing that the short axis of elliptic matrix was equal to the diameter of circular matrix. Three schemes were adopted to investigate the performance matrices with ratio of long axis to short axis λ of 1 (circular matrix), 1.6 and 2. Under the same matrix unit number, hematite recovery of elliptic matrices could be 5~20% higher than that of circular matrices. For the case that the separation space was fully filled under the same matrix unit spacing, elliptic matrices showed higher and lower hematite recovery in low and relatively high magnetic field. The particle capture cross section area of elliptic matrix could be 1.4~1.8 times larger than that of circular matrix. Analyses with particle capture models showed that higher hematite recovery was ascribed to the larger particle capture cross section of the elliptic matrices and overlapping of the capture cross section was responsible for the lower hematite recovery of elliptic matrices in relatively high magnetic field. For substitution of circular matrices with elliptic matrices in axial HGMS, overlapping of capture cross section of target particles should be taken into consideration.
Rocznik
Strony
655--666
Opis fizyczny
Bibliogr. 33 poz., rys. kolor.
Twórcy
autor
  • Central South University, Yuelu District NO. 968, 410083 Changsha, China
autor
  • Central South University, Yuelu District NO. 968, 410083 Changsha, China
autor
  • Central South University, Yuelu District NO. 968, 410083 Changsha, China
autor
  • Central South University, Yuelu District NO. 968, 410083 Changsha, China
Bibliografia
  • ABBASOV, T., HERDEM, S., KÖKSAL, M., 1999. Particle capture in axial magnetic filters with power law flow model, J. Phys. D: Appl. Phys. 32, 1097-1103.
  • ABBASOV, T., GÖGEBAKAN, V., KARADAĞ, T., 2016. Particle capture modeling for an axial magnetic filter with a bounded non-Newtonian flow field, Powder Technol. 291, 223-228.
  • BRISS, R.R., GERBER, R., PARKER, M.R., 1976. Theory and design of axially ordered filters for high intensity magnetic separation, IEEE Trans. Magn. 12, 892-894.
  • CHEN, H., BOCKENFELD, D., REMPFER, D., KAMINSKI, M.D., LIU, X., ROSENGART, A.J., 2008. D analysis of a high gradient magnetic separator for biomedical applications, J. Magn. Magn. Mater. 320, 279-284.
  • CHEN, L., 2011, Effect of magnetic field orientation on high gradient magnetic separation performance, Miner. Eng. 24, 88-90.
  • KANOK, H., MAYUREE, N., 2013. The capture of micro-particles by random cylindrical wires in axial magnetic filters, Sep. Sci. Technol. 48, 2234-2242.
  • KIM, Y.G., SONG, J.B., YANG, D.G., LEE, J.S., PARK, Y.J., KANG, D.H., LEE, H.G., 2013. Effects of filter shapes on the capture efficiency of a superconducting high-gradient magnetic separation system, Supercond. Sci. Technol. 26, 85002-85008.
  • LACOBA, Gh., REZLESCU, N., 1998. Experimental observations on the saturation mass in the capture process of an ordered transverse high gradient magnetic separation matrix, Powder Technol. 97, 233-236.
  • LINDNER, J., MENZEL, K., NIRSCHL, H., 2013. Parameters influencing magnetically enhanced centrifugal for protein separation, Chemical Engineering Science, 97, 385-393.
  • LI, W., HAN, Y., XU, R., GONG, E., 2018. A preliminary investigation into separating performance and magnetic field characteristic analysis based on a novel matrix, Minerals, 8, 1-16.
  • LI, X.L., YAO, K.L., LIU, H.R., LIU, Z.L., 2007. The investigation of capture behaviors of different shape magnetic sources in the high-gradient magnetic field, J. Magn. Magn. Mater. 311, 481-488.
  • MARIANI, G., FABBRI, M., NEGRINI, F., RIBANI, L., 2010. High-Gradient Magnetic Separation of pollutant from wastewaters using permanent magnets, Sep. Purif. Technol. 72, 147-155.
  • NAKAI Y., MISHIMA F., AKIYAMA Y., NISHIJIMA S., 2010. Development of high gradient magnetic separation system under dry condition, Phys. C: Appl. Supercond. 470, 1812-1817.
  • PASTEUR, A., TIPPKOTTER, N., KAMPEIS, P., ULBER, R., 2014, Optimization of high gradient magnetic separation filter units for the purification of fermentation products, IEEE Trans. Magn. 50 1-7.
  • SINGH, V., NAG, S., TRIPATHY, S.K., 2013. Particle flow modeling of dry induced roll magnetic separator, Powder Technol. 244, 85-92.
  • SINGH, S., SAHOO, H., RATH, S.S., SAHU, A.K., DAS, B., 2015. Recovery of iron minerals from Indian iron ores slimes using colloidal magnetic coating, Powder Technol. 269, 38-45.
  • TOH, P.Y., YEAP, S.P., KONG, L.P., 2012. Magnetophoretic removal of microalgae from fishpond water: Feasibility of high gradient and low gradient magnetic separation, Chem. Eng. J. 211, 22-30.
  • TRIPATHY, S.K., SURESH, N., 2017a. Influence of particle size on dry high-intensity magnetic separation of paramagnetic mineral, Adv. Powder Technol. 28, 1092-1102.
  • TRIPATHY, S.K., SINGH, V., MURTHY, Y.R., Banerjee, P.K., SURESH, N., 2017b. Influence of process parameters of dry high intensity magnetic separators on separation of hematite, Int. J. Miner. Process. 160, 16-31.
  • UCHIYAMA, S., KONDO, S., TAKAYASU, M., 1976. Performance of parallel stream type magnetic filter for HGMS, IEEE Trans. Magn. 12, 895-897.
  • WANG, Y., DAN, X., ZHENG, X., LI, X., 2018a. Study on the demarcation of applied magnetic induction for determining magnetization state of matrices in high gradient magnetic separation, Miner. Eng. 127, 191-197.
  • WANG, Y., DAN, X., ZHENG, X., LI, X., 2018b. Rapid determination of the magnetization state of elliptic cross-section matrices for high gradient magnetic separation, Powder Technol. 339, 139-148.
  • WATSON, J.H.P., Magnetic filtration, 1973. J. Appl. Phys. 44, 4209-4213.
  • WATSON, J.H.P., 1975, Theory of capture of particles in magnetic high intensity filters, IEEE Trans. Magn. 11, 1597-1599.
  • ZHENG, X., WANG, Y., LU, D., 2015a. Study on capture radius and efficiency of fine weakly magnetic minerals in high gradient magnetic field, Miner. Eng. 74, 79-85.
  • ZHENG, X., WANG, Y., LU, D., 2015b. A realistic description of influence of the magnetic field strength on high gradient magnetic separation, Miner. Eng. 79, 94-101.
  • ZHENG, X., WANG, Y., LU, D., 2016a. Investigation of the particle capture of elliptic cross-sectional matrix for high gradient magnetic separation, Powder Technol. 297, 303-310.
  • ZHENG, X., WANG, Y., LU, D., 2016b. Effect of matrix shape on the capture of fine weakly magnetic minerals in high gradient magnetic separation, IEEE Trans. Magn. 52, 7005111.
  • ZHENG, X., WANG, Y., LU, D., 2016c. Particle capture efficiency of elliptic cylinder matrices for high-gradient magnetic separation, Sep. Sci. Technol. 51, 2090-2097.
  • ZHENG, X., WANG, Y., LU, D., 2017a. Study on buildup of fine weakly magnetic minerals on matrices in high gradient magnetic separation, Physicochem. Probl. Miner. Process. 53(1), 94-109.
  • ZHENG, X., GUO, N., CUI, R., LU, D., LI, X., LI, M., WANG, Y., 2017b. Magnetic field simulation and experimental tests of special cross-sectional shape matrices for high gradient magnetic separation, IEEE Trans. Magn. 53, 9200110.
  • ZHENG, X., WANG, Y., LU, D., LI, X., LI, S., CHU, H., 2017c. Comparative study on the performance of circular and elliptic cross-section matrices in axial high gradient magnetic separation: Role of the applied magnetic induction, Miner. Eng. 110, 12-19.
  • ZHENG, X., WANG, Y., LU, D., LI, X., 2017d. Theoretical and experimental study on elliptic matrices in the transversal high gradient magnetic separation, Miner. Eng. 111, 68-78.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de71693a-e770-4deb-8b72-6c853cfeceda
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.