PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and antibacterial properties of a ZnO coating on a biomaterial surface

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A promising strategy for fighting the bacterial biofilm on the surface of biomaterials involves modification of their surface with the use of bactericidal and bacteriostatic coatings. Ongoing studies concentrate on the development of material that can limit bacterial colonisation and is safe for the human organism. Therefore, the current research focuses on the conditions related to implant coating to limit biofilm formation. However, previous outcomes in this area have not been satisfactory. Accordingly, the main goal of the carried out tests was to study the impact of the physicochemical properties of the surface layers on the course of processes taking place on the surface of implants made of metallic biomaterials used in the bone system. The surface of the analysed biomaterial -316LVM steel - was modified using such processes as grinding, electrochemical polishing, sandblasting, application of a ZnO layer using low-temperature Atomic Layer Deposition (ALD), and medical sterilisation. Initial assessments involved the chemical composition, phase composition, and the microstructure of the surface layer. The last stage involved microbiological studies, including an assessment of the adhesion of Gram-positive and Gram-negative bacteria to the modified surface, proliferation of MG-63 osteoblast-like cells and cytotoxicity tests. The analysis of adhesion of S. aureus and E. coli colonies confirmed that the ZnO coating is effective in reducing bacterial adhesion to the 316LVM steel substrate, regardless of the number of cycles, process temperature and surface treatment method.
Rocznik
Strony
art. no. e93, 1--18
Opis fizyczny
Bibliogr. 19 poz., il., tab., wykr.
Twórcy
  • Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
  • Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
autor
  • Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
  • Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
  • Faculty of Chemistry, Silesian University of Technology, Gliwice, Poland
  • Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
  • Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Kraków, Poland
  • Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland
  • Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland
  • Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland
  • Institute of Metallurgy and Materials Science of Polish Academy of Sciences, Kraków, Poland
autor
  • Institute of Metallurgy and Materials Science of Polish Academy of Sciences, Kraków, Poland
  • Nanotechnology Centre, CEET, VŠB-Technical University of Ostrava, Ostrava, Czech Republic
autor
  • Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Czestochowa, Poland
  • Fabryka Narzędzi Medycznych CHIRMED Marcin Dyner, Rudniki k, Czestochowa, Poland
Bibliografia
  • 1. Van Winkelhoff A J. Antibiotics in the treatment of peri-implantitis. Eur J Oral Implant. 2012;5:43-50.
  • 2. Rm D. Preventing biofilms of clinically relevant organisms using bacteriophage. Trends Microbiol. 2009;17(2):66-72.
  • 3. Trampuz A, Zimmerli W. Diagnosis and treatment of infections associated with fracture-fixation devices. Injury. 2006.
  • 4. Ochsner PE, Majewski M, Plaass C. Infection after osteosynthesis: a summary of the scientific presentations at the annual Swiss AO meeting 2005 in Liestal. Injury. 2006;37(2):S117-9.
  • 5. Walke W, Paszenda Z, Pustelny T, Opilski Z, Drewniak S, Kościelniak-Ziemniak M, Basiaga M. Evaluation of physicochemical properties of SiO2-coated stainless steel after sterilization. Mater Sci Eng, C. 2016;63:155-163.
  • 6. Cr A, et al. Antibiotic resistance in exopolysaccharide-forming Staphylococcus epidermidis clinical isolates from orthopedic implant infections. Biomaterials. 2005;26(33):6530-5.
  • 7. Liu Y, Li Y, Shi L. Controlled drug delivery systems in eradicating bacterial biofilm-associated infections. J Control Release. 2021;329:1102-1116.
  • 8. Yi X, Wang C, Yu X, Yuan Z. A novel bacterial biofilms eradication strategy based on the microneedles with antibacterial properties. Procedia CIRP. 2020;89:159-163.
  • 9. Liu Y, et al. Nanocarriers with conjugated antimicrobials to eradicate pathogenic biofilms evaluated in murine in vivo and human ex vivo infection models. Acta Biomater. 2018;79:331-343.
  • 10. Scislowska-Czarnecka A, Pamula E, Kolaczkowska E. Biocompatibility evaluation of glycolide-containing polyesters in contact with osteoblasts and fibroblasts. J Appl Polym Sci. 2013;127(4):3256-3268.
  • 11. Rochford ETJ, Richards RG, Moriarty TF. Influence of material on the development of device-associated infections. Clin Microbiol Infect. 2012;18(12):1162-7.
  • 12 Costerton JW, Montanaro L, Arciola CR. Biofilm in implant infections: its production and regulation. Int J Artif Organs. 2005;28:1062-8.
  • 13 Chavant P, Gaillard-Martinie B, Talon R, Hebraud M, Bernardi T. A new device for rapid evaluation of biofilm formation potential by bacteria. J Microbiol Methods. 2007;68(3):605-612.
  • 14 Qiu L, Liu L, Zhu H, Liu X. Combination types between graphene oxide and substrate affect the antibacterial activity. Bioact Mater. 2018;3:341-346.
  • 15. Xin Q, et al. Antibacterial carbon-based nanomaterials. Adv Mater. 2019;31(45):1804838.
  • 16. Peel TN, Buising KL, Choong PFM. Prosthetic joint infection: challenges of diagnosis and treatment. ANZ J Surg. 2011;81(1-2):32-39.
  • 17. Gupta VK, Fakhri A, Tahami S, Agarwal S. Zn doped CdO nanoparticles: structural, morphological, optical, photocatalytic and anti-bacterial properties. J Colloid Interface Sci. 2017;17:164-170.
  • 18. Basiaga M, Walke W, Antonowicz M, Kajzer W, Szewczenko J, Domanowska A, Michalewicz A, Szindler M, Staszuk M, Czajkowski M. Impact of surface treatment on the functional properties stainless steel for biomedical applications. Materials. 2020;13:47-67.
  • 19. Basiaga M, et al. Influence of ALD process parameters on the physical and chemical properties of the surface of vascular stents. Arch Civ Mech Eng. 2017;17(1):32-42.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de70899b-f397-4262-9114-c1c38c2b3013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.