PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling a Bistable System Strongly Coupled to a Debye Bath: A Quasiclassical Approach Based on the Generalised Langevin Equation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bistable systems present two degenerate metastable configurations separated by an energy barrier. Thermal or quantum fluctuations can promote the transition between the configurations at a rate which depends on the dynamical properties of the local environment (i.e., a thermal bath). In the case of classical systems, strong system-bath interaction has been successfully modelled by the Generalised Langevin Equation (GLE) formalism. Here we show that the efficient GLE algorithm introduced in Phys. Rev. B 89, 134303 (2014) can be extended to include some crucial aspect of the quantum fluctuations. In particular, the expected isotopic effect is observed along with the convergence of the quantum and classical transition rates in the strong coupling limit. Saturation of the transition rates at low temperature is also retrieved, in qualitative, yet not quantitative, agreement with the analytic predictions. The discrepancies in the tunnelling regime are due to an incorrect sampling close to the barrier top. The domain of applicability of the quasiclassical GLE is also discussed.
Twórcy
autor
  • Atomistic Simulation Centre, School of Mathematics and Physics Queen’s University Belfast, University Road, Belfast BT7 1NN, Northern Ireland, UK
autor
  • Department of Physics, Faculty of Natural and Mathematical Sciences King’s College London, Strand, London WC2R 2LS, UK
autor
  • Department of Physics, Faculty of Natural and Mathematical Sciences King’s College London, Strand, London WC2R 2LS, UK
  • Department of Physics, Faculty of Natural and Mathematical Sciences King’s College London, Strand, London WC2R 2LS, UK
Bibliografia
  • [1] R. Zwanzig, Memory Effects in Irreversible Thermodynamics, Phys. Rev. 124, 983–992 (Nov 1961).
  • [2] H. Mori, Transport, Collective Motion, and Brownian Motion, Prog. Theor. Phys. 33(3), 423–455 (1965).
  • [3] H. Mori, A Continued-Fraction Representation of the Time-Correlation Functions, Prog. Theor. Phys. 34(3), 399–416 (1965).
  • [4] R. Zwanzig, Nonlinear generalized Langevin equations, J. Stat. Phys. 9(3), 215–220 (1973).
  • [5] D.S. Lemons and A. Gythiel, Paul Langevin’s 1908 paper “On the Theory of Brownian Motion” [“Sur la théorie du movement brownien,” C. R. Acad. Sci. (Paris) 146, 530–533 (1908)], Am. J. Phys. 65(11), 1079–1081 (1997).
  • [6] R. Kubo, The fluctuation-dissipation theorem, Rep. Prog. Phys. 29(1), 255 (1966).
  • [7] R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford University Press, 2001.
  • [8] H. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica7(4), 284–304 (1940).
  • [9] P. Hänggi, P. Talkner, and M. Borkovec, Reaction-rate theory: fifty years after Kramers, Rev. Mod. Phys. 62, 251–341 (1990).
  • [10] E. Pollak, Theory of activated rate processes: A new derivation of Kramers’ expression, J. Chem. Phys. 85(2), 865–867 (1986).
  • [11] E. Pollak, H. Grabert, and P. Hn̈ggi, Theory of activated rate processes for arbitrary frequency dependent friction: Solution of the turnover problem, J. Chem. Phys. 91(7), 4073–4087 (1989).
  • [12] S.C. Tucker, M.E. Tuckerman, B.J. Berne, and E. Pollak, Comparison of rate theories for generalized Langevin dynamics, J. Chem. Phys. 95(8), 5809–5826 (1991).
  • [13] B. Carmeli and A. Nitzan, Non-Markoffian Theory of Activated Rate Processes, Phys. Rev. Lett. 49, 423–426 (1982).
  • [14] B. Carmeli and A. Nitzan, Non-Markovian theory of activated rate processes. I. Formalism, J. Chem. Phys. 79(1), 393–404 (1983).
  • [15] F. Marchesoni and P. Grigolini, On the extension of the Kramers theory of chemical relaxation to the case of nonwhite noise, J. Chem. Phys. 78(10), 6287–6298 (1983).
  • [16] G.W. Ford, M. Kac, and P. Mazur, Statistical Mechanics of Assemblies of Coupled oscillator, J. Math. Phys. 6, 504 (1965).
  • [17] R. Benguria and M. Kac, Quantum Langevin Equation, Phys. Rev. Lett. 46, 1 (1981).
  • [18] G.W. Ford and M. Kac, On the Quantum Langevin Equation, J. Stat. Phys. 46, 803 (1987).
  • [19] G.W. Ford, J.T. Lewis, and R.F. O’Connell, Quantum Langevin equation, Phys. Rev. B 37, 4419 (1988).
  • [20] E. Pollak, Transition state theory for quantum decay rates in dissipative systems: the high-temperature limit, Chem. Phys. Lett. 127(2), 178–182 (1986).
  • [21] E. Pollak, Transition-state theory for tunneling in dissipative media, Phys. Rev. A 33, 4244–4252 (1986).
  • [22] G. Ford, J. Lewis, and R. O’Connell, Dissipative quantum tunneling: quantum Langevin equation approach, Phys. Lett. A 128(1), 29–34 (1988).
  • [23] A.O. Caldeira and A.J. Leggett, Influence of Dissipation on Quantum Tunneling in Macroscopic Systems, Phys. Rev. Lett. 46, 211–214 (1981).
  • [24] A. Caldeira and A. Leggett, Path integral approach to quantum Brownian motion, Physica A121(3), 587–616 (1983).
  • [25] A. Caldeira and A. Leggett, Quantum tunnelling in a dissipative system, Ann. Phys. 149(2), 374–456 (1983).
  • [26] H. Grabert, P. Schramm, and G.-L. Ingold, Quantum Brownian motion: The functional integral approach, Phys. Rep. 168(3), 115–207 (1988).
  • [27] P.A.M. Dirac, Quantum Mechanics and a Preliminary Investigation of the Hydrogen Atom, Proc. R. Soc. Lond. A110(755), 561–579 (1926).
  • [28] A. Schmid, On a Quasiclassicai Langevin Equation, J. Low Temp. Phys. 49, 609 (1982).
  • [29] U. Eckern, W. Lehr, A. Menzel-Dorwarth, F. Pelzer, and A. Schmid, The quasiclassical Langevin equation and its application to
  • the decay of a metastable state and to quantum fluctuations, J. Stat. Phys. 59(3), 885–934 (1990).
  • [30] J.T. Stockburger and H. Grabert, Exact c-Number Representation of Non-Markovian Quantum Dissipation, Phys. Rev. Lett. 88, 170407 (2002).
  • [31] D. Barik, B.C. Bag, and D.S. Ray, Numerical simulation of transmission coefficient using c-number Langevin equation, J. Chem. Phys. 119(24), 12973–12980 (2003).
  • [32] D. Banerjee, B.C. Bag, S.K. Banika, and D.S. Ray, Solution of quantum Langevin equation: Approximations, theoretical and numerical aspects, J. Chem. Phys. 120, 8960 (2004).
  • [33] H. Dammak, Y. Chalopin, M. Laroche, M. Hayoun, and J.-J. Greffet, Quantum Thermal Bath for Molecular Dynamics Simulation, Phys. Rev. Lett. 103(19), 190601 (2009).
  • [34] L. Kantorovich, H. Ness, L. Stella, and C.D. Lorenz, c-number quantum generalized Langevin equation for an open system, Phys. Rev. B 94, 184305 (2016).
  • [35] L. Stella, C.D. Lorenz, and L. Kantorovich, Generalized Langevin equation: An efficient approach to nonequilibrium molecular dynamics of open systems, Phys. Rev. B 89, 134303 (2014).
  • [36] D. Banerjee, B.C. Bag, S.K. Banik, and D.S. Ray, Approach to quantum Kramers equation and barrier crossing dynamics, Phys. Rev. E 65, 021109 (2002).
  • [37] D. Banerjee, S.K. Banik, B.C. Bag, and D.S. Ray, Quantum Kramers equation for energy diffusion and barrier crossing dynamics in the low-friction regime, Phys. Rev. E 66, 051105 (2002).
  • [38] H. Grabert, P. Olschowski, and U. Weiss, Quantum decay rates for dissipative systems at finite temperatures, Phys. Rev. B 36, 1931–1951 (1987).
  • [39] E. Cortes, B.J. West, and K. Lindenberg, On the GLE: classical and quantum mechanical, J. Chem. Phys. 82, 2708 (1985).
  • [40] M. Ceriotti, G. Bussi, and M. Parrinello, Nuclear Quantum Effects in Solids Using a Colored-Noise Thermostat, Phys. Rev. Lett. 103, 030603 (2009).
  • [41] L. Kantorovich and N. Rompotis, Generalized Langevin equation for solids. II. Stochastic boundary conditions for nonequilibrium molecular dynamics simulations, Phys. Rev. B78(9), 094305 (2008).
  • [42] H. Ness, L. Stella, C.D. Lorenz, and L. Kantorovich, Applications of the generalized Langevin equation: Towards a realistic description of the baths, Phys. Rev. B 91, 014301 (2015).
  • [43] H. Ness, A. Genina, L. Stella, C.D. Lorenz, and L. Kantorovich, Nonequilibrium processes from generalized Langevin equations: Realistic nanoscale systems connected to two thermal baths, Phys. Rev. B 93, 174303 (2016).
  • [44] F. Gottwald, S. Karsten, S.D. Ivanov, and O. Kühn, Parametrizing linear generalized Langevin dynamics from explicit molecular dynamics simulations, The Journal of Chemical Physics142(24), 244110 (2015).
  • [45] F. Gottwald, S.D. Ivanov, and O. Kühn, Vibrational spectroscopy via the Caldeira-Leggett model with anharmonic system potentials, The Journal of Chemical Physics144(16), 164102 (2016).
  • [46] G. Kemeny, S.D. Mahanti, and T.A. Kaplan, Generalized Langevin equation for an oscillator, Phys. Rev. B 34, 6288–6294 (1986).
  • [47] B. Leimkuhler and C. Matthews, Robust and efficient configurational molecular sampling via Langevin dynamics, J. Chem. Phys. 138(17), 174102 (2013).
  • [48] M. Ceriotti, D.E. Manolopoulos, and M. Parrinello, Accelerating the convergence of path integral dynamics with a generalized Langevin equation, J. Chem. Phys. 134(8), 084104 (2011).
  • [49] P.S. Riseborough, P. Hanggi, and U. Weiss, Exact results for a damped quantum-mechanical harmonic oscillator, Phys. Rev. A 31, 471–478 (1985).
  • [50] M. Gillan, Quantum-classical crossover of the transition rate in the damped double well, J. Phys. Condens. Matter20(24), 3621 (1987).
  • [51] R.F. Grote and J.T. Hynes, The stable states picture of chemical reactions. II. Rate constants for condensed and gas phase reaction models, J. Chem. Phys. 73(6), 2715–2732 (1980).
  • [52] H. Eyring, The Activated Complex in Chemical Reactions, J. Chem. Phys. 3(2), 107–115 (1935).
  • [53] P.G. Wolynes, Quantum Theory of Activated Events in Condensed Phases, Phys. Rev. Lett. 47, 968–971 (1981).
  • [54] R.P. Bell, The tunnel effect correction for parabolic potential barriers, Trans. Faraday Soc. 55, 1–4 (1959).
  • [55] V. Mel’nikov and S.V. Meshkov, Theory of activated rate processes: Exact solution of the Kramers problem, J. Chem. Phys. 855(2), 1018–1027 (1986).
  • [56] H. Grabert, Escape from a Metastable Well: The Kramers Turnover Problem, Phys. Rev. Lett. 61, 1683–1686 (1988).
  • [57] P. Hänggi and W. Hontscha, Unified approach to the quantum-Kramers reaction rate, J. Chem. Phys. 88(6), 4094–4095 (1988).
  • [58] P. Hänggi and W. Hontscha, Periodic Orbit Approach to the Quantum-Kramers-Rate, Ber. Bunsenges. Phys. Chem. 95(3), 379–385 (1991).
  • [59] W.H. Miller, Semi-classical theory for non-separable systems:. Construction of “good” action-angle variables for reaction rate constants, Farad. Discuss. 62, 40–46 (1977).
  • [60] D. Barik, S.K. Banik, and D.S. Ray, Quantum phase-space function formulation of reactive flux theory, J. Chem. Phys. 119(2), 680–695 (2003).
  • [61] J.O. Richardson and S.C. Althorpe, Ring-polymer molecular dynamics rate-theory in the deep-tunneling regime: Connection with semiclassical instanton theory, J. Chem. Phys. 131(21), 214106 (2009).
  • [62] T.J.H. Hele, M.J. Willatt, A. Muolo, and S.C. Althorpe, Communication: Relation of centroid molecular dynamics and ring-polymer molecular dynamics to exact quantum dynamics, J. Chem. Phys. 142(19), 191101 (2015).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de6fc4d8-4afd-4058-a45b-e1491220811a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.