PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Związki wanadu i chromu jako potencjalne insulino-mime tyki wykorzystywane w leczeniu cukrzycy

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Vanadium and chromium compounds as the potential insulin-mimetics used in the treatment of diabetes
Języki publikacji
PL
Abstrakty
EN
The report focuses on the antidiabetic, also termed insulin-like, effect of various vanadium and chromium derivatives, proposed mechanisms of their activity, their use in in vivo and in vitro studies, as well as in diabetic patients, their toxicity and effectiveness in controlling clinical signs of diabetes. Studies indicate that compounds of vanadium and chromium is necessary for regulation of carbohydrate and lipid metabolism mainly due to increasing the number of insulin receptors and its activation by phosphorylation. Some authors believe that compounds of chromium(III) deficiency can lead to glucose intolerance and symptoms of type 2 diabetes. However, due to methodological limitations of many clinical studies, the statements of major diabetes associations concerning recommendation of various vanadium and chromium derivatives supplementation in individuals with diabetes and obesity still remains negative. Additional studies are urgently needed to elucidate the mechanism of action of chromium and vanadium compounds and its role in the prevention and control of diabetes.
Rocznik
Strony
753--775
Opis fizyczny
Bibliogr. 51 poz., schem., tab.
Twórcy
  • Uniwersytet Gdański, Wydział Chemii, ul. Wita Stwosza 63, 80-308 Gdańsk
  • Uniwersytet Gdański, Wydział Chemii, ul. Wita Stwosza 63, 80-308 Gdańsk
  • Uniwersytet Gdański, Wydział Chemii, ul. Wita Stwosza 63, 80-308 Gdańsk
  • Uniwersytet Gdański, Wydział Chemii, ul. Wita Stwosza 63, 80-308 Gdańsk
Bibliografia
  • [1] M. Małecki, Otyłość-insulinoopomość-cukrzyca typu 2. [online], Kardiologia Polska, [dostęp: 11.07.2019] Dostępny w Internecie: https://joumals.viamedica.pl/clinical_diabetology/article/viewFile/8399/1160%3BZalecenia
  • [2] G. Vardatsikos, M.Z. Mehdi, A.K. Srivastava, Bis(maltolato)-oxovanadium (IV)-induced phosphorylation of PKB, GSK-3 and FOXO1 contributes to its glucoregulatory responses (review). Int. J. Mol. Med., 2009, 24, 303.
  • [3] D.C. Crans, J.J. Smee, E. Gaidamauskas, L. Yang, The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem. Rev., 2004, 104, 849.
  • [4] R.R. Moskalyk, A.M Alfantaz, Processing of vanadium: a review. Miner. Eng., 2003, 16(9), 193.
  • [5] B. Mukherjee, B. Patra, S. Mahapatra, P. Banerjee, A. Tiwari, M. Chatterjee, Vanadium-an element of atypical biological significance. Toxicol. Lett., 2004, 150(2), 135.
  • [6] F. Jafari-Moghaddam, S.A. Beyramabadi, M. Khashi, A. Morsali, Three VO2+ complexes of the pyridoxal-derived Schiff bases: Synthesis, experimental and theoretical characterizations, and catalytic activity in a cyclocondensation reaction. J. Mol. Struct., 2018, 1153, 149.
  • [7] M. Aureliano, R.M. Gándara, Decavanadate effects in biological systems. J. Inorg. Biochem., 2005, 99(5), 919.
  • [8] K.H. Thompson, Ch. Orvig, Vanadium in diabetes: 100 years from Phase 0 to Phase I. J. Inorg. Biochem., 2006, 100(12), 1925.
  • [9] A.P. Seale, L.A. de Jesus, M.C. Park, Y.S. Kim, Vanadium and insulin increase adiponectin production in 3T3-L1 adipocytes. Pharmacol. Res., 2006, 54(1), 30.
  • [10] C.E. Heiliger, A.G. Tahiliani, J.H. McNeill., Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats. Science 1985, 227, 1414.
  • [11] L. Marzban, R. Rahimian, R. W. Brownsey, J.H. McNeill, Mechanisms by which bis(maltola-to)oxovanadium(IV) normalizes phospho-enolpyruvate carboxykinase and glucose-6-phosphatase expression in streptozotocin-diabetic rats in vivo. Endocrin. 2002, 143, 4636.
  • [12] J.H. McNeill, V. G. Yuen, S. Dai, C. Orving, Increased potency of vanadium using organic ligands. Mol. Cell. Biochem., 1995, 153, 115.
  • [13] Z. Li, J.D. Carter, L.A. Dailey, C.T. Huang, Vanadyl sulfate inhibits NO production via threonine phosphorylation of eNOS. Environ. Health Perspect., 2004, 112, 201.
  • [14] K.H. Thompson, J. Chiles, V.G. Yuen, J. Tse, J.H. McNeill, C. Orvig, Comparison of anti-hyperglycemic effect amongst vanadium, molybdenum and other metal maltol complexes. J. Inorg. Biochem., 2004, 98, 683.
  • [15] D.C. Crans, J.J. Smee, E. Gaidamauskas, L. Yang, The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem. Rev., 2004, 104, 849.
  • [16] J.H. McNeill, V.G. Yuen, H.R. Hoveyda, C. Orvig, Bis(maltolato)oxovanadium(IV) is a potent insulin-mimic. J. Med. Chem., 1992, 35, 1489.
  • [17] H. Sakurai, H. Tamura, K. Okatawi, Mechanism for a new antitumor vanadium complex: hydroxyl radical dependent DNA. Biochem. Biophys. Res. Commun., 1995, 206, 113.
  • [18] A.M. Kordowiak, R. Trzos, R. Gryboce, Insulin-like effects on liver Golgi membrane preparations of bis(oxalato)oxovanadate(IV) complex ion, a new vanadate compound. Horm. Metab. Res., 1997, 29, 104.
  • [19] P. Poucheret, S. Verma, M.D. Grynpas, J.H. McNeill, Vanadium and diabetes. Mol. Cell Biochem., 1998, 188, 73.
  • [20] A. Kiersztan, K. Winiarska, J. Drozak, M. Przedlacka, M. Wegrzynowicz, T. Fraczyk, J. Bryla, Differential effects of vanadium tungsten and molybdenum on inhibition of glucose formation in renal tubules and hepatocytes of control and diabetic rabbits: beneficial action of melatonin and N-acetylcysteine. Mol. Cell Biochem., 2004, 261, 9.
  • [21] B.A. Reul, S.S. Amin, J.P. Buchet, L.N. Ongemba, D.C. Crans, S.M. Brichard. Metabolic effects of vanadyl sulphate in humans with non-insulin-dependent diabetes mellitus: in vivo and in vitro studies. Brit. J. Pharmacol., 1999, 126, 467.
  • [22] L.C.Y. Woo, V.G. Yuen, K.H. Thompson, J.H. McNeill, C. Orvig, Vanadyl-biquanide complexes as potential synergistic insulin mimics. J. Inorg. Biochem., 1999, 76, 251.
  • [23] E.J. Baran, Oxovanadium(IV) complexes of carbohydrates. J. Carbohydrate Chem., 2001, 20, 769.
  • [24] A.M. Kordowiak, W. D¥broce, B. Kajda, Influence of a new vanadium complex, bis(2,2'-bipirydi-ne)oxovanadium(IV) sulfate on liver Golgi complexes from control and streptozotocin- diabetic rats. Horm. Metab. Res., 2002, 34, 556.
  • [25] V.G. Yuen, S. Bhanot, M.L. Battel, C. Orvig, J.H. McNeill, Chronic glucose-lowering effects of rosigliatazone and bis(ethylmaltolato)oxovanadium(IV) in ZDF rats. Can. J. Physiol. Pharmacol., 2003, 81, 1049.
  • [26] P.A.M. Williams, D.A. Barrio, S.B. Etcheverry, E.J. Baran. Characterization of oxovanadium(IV) complexes of D-gluconic and D-sacccharic acids and their bioactivity on osteoblast-like cells in culture. J. Inorg. Biochem., 2004, 98, 333.
  • [27] K. Kawabe, Y. Yoshikawa, Y. Adachi, H. Sakurai, Possible mode of action for insulinomimetic activity of vanadyl(IV) compounds in adipocytes. Life. Sci., 2006, 78, 2860.
  • [28] M.Z. Mehdi, G. Vardatsikos, S.K. Pandey, A.K. Srivastava, Involvement of insulin-like growth factor type 1 receptor and protein kinase Cdelta in bis(maltolato)oxovanadium(IV)-induced phosphorylation of protein kinase B in HepG2 cells. Biochem., 2006, 45, 11605.
  • [29] A.K. Srivastava, M.Z. Mehdi, Insulino-mimetic and anti-diabetic effects of vanadium compounds. Diabet. Med., 2005, 22, 2.
  • [30] A. Kiersztan, A. Modzelewska, R. Jarzyna, E. Jagielska, J. Bryla, Inhibition of gluconeogenesis by vanadium and metformin in kidney-cortex tubules isolated from control and diabetic rabbits. Biochem. Pharmacol., 2002, 63, 1371.
  • [31] K. Kawabe, Y. Yoshikawa, Y. Adachi, H. Sakurai, Possible mode of action for insulinomimetic activity of vanadyl(IV) compounds in adipocytes. Life Sci., 2006, 78, 2860.
  • [32] D. Rehder, Vanadium. Its role for humans. Met. Ions Life Sci., 2013, 13, 139.
  • [33] R. Francik, M. Krośniak, M. Barlik, A. Kudła, R. Gryboś, T. Librowski, Impact of vanadium complexes treatment on the oxidative stress factors in wistar rats plasma. Bioinorg. Chem., 2011, 2011, 206316.
  • [34] M. Krośniak, M. Gawlik, R. Gryboś. Effect of vanadium complexes and insulin administered simultaneously for oxidative stress in STZ diabetic rats. Bull. Vet. Inst., 2009, 53(3), 535.
  • [35] M. Krośniak, W. Krzyściak, A. Kareta, R. Gryboś. Activities of glutathione peroxidase and catalase in organs from vanadium-treated rats. Acta Biol. Crac., Ser. Zool. 2009, 51, 39.
  • [36] G. Boden, X. Chen, J. Ruiz, G.D. van Rossum, S. Turco, Effects of vanadyl sulfate on carbohydrate and lipid metabolism in patients with non-insulindependent diabetes mellitus. Metabolism, 1996, 45, 1130.
  • [37] P. Holko, J. Ligeza, J. Kisielewska, A.M. Kordowiak, A. Klein, The effect of vanadyl sulphate (VOSO4) on autocrine growth of human epithelial cancer cell lines. Pol. J. Pathol. 2008, 59, 3.
  • [38] H.J. Lunk, Discovery, properties and applications of chromium and its compounds, Chem.Texts., 2015, 1, 6.
  • [39] W. Mertz, Chromium occurrence and function in biological systems. Physiol. Rev., 1969, 49(2), 163.
  • [40] S. Lewicki, R. Zdanowski, M. Krzyżowska, A. Lewicka, В. Dębski, M. Niemcewicz, М. Goniewicz, The role of chromium(III) in the organism and its possible use in diabetes and obesity treatment, Ann. Agric. Environ. Med., 2014, 21(2), 331.
  • [41] A. Levina, P.A. Lay, Chemical properties and toxicity of chromium(III) nutritional supplements school of chemistry. Chem. Res. Toxicol., 2008, 21(3), 563.
  • [42] W. Piotrowska, Ł. Pilch, G. Tota, A. Nowak, Biologiczne znaczenie chromu(III) dla organizmu człowieka. Medycyna Pracy, 2018, 69(2), 211.
  • [43] H.C. Lukaski, W.A. Siders, J.G. Penland, Chromium picolinate supplementation in women: effects on body weight, composition, and iron status. Nutrition, 2007, 23(3), 187.
  • [44] M. Krzysik, H. Grajeta, Rola chromu w etiopatogenezie wybranych chorób. Bromat. Chem. Toksykol., 2010, 3, 428.
  • [45] N. Yasarawan, K. Thipyapong, S. Sirichai, V. Ruangpornvisuti, Synthesis of chromium(III) complex with 1-hydroxy-2-pyridinone-6-carboxylic acid as insulin-mimetic agent and its spectroscopic and computational studies. J. Mol. Struct., 2013, 1031, 144.
  • [46] O. Tsave, M.P. Yavropoulou, M. Kafantari, C. Gabriel, J.G. Yovos, A. Salifoglou, The adipogenic potential of Cr(III). A molecular approach exemplifying metal-induced enhancement of insulin mimesis in diabetes mellitus II. J. Inorg. Biochem., 2016, 163, 331.
  • [47] Mulyani, A. Levina, P.A. Lay, Biomimetic oxidation of chromium (III): does the antidiabetic activity of chromium (III) involve carcinogenic chromium (VI)?. Angew. Chem. Int. Edit., 2004, 43, 4504.
  • [48] K.W. Fritz, P. Bohm, G. Buntru, C.H. Lowen, Acuteoccupational poisoning with dichromates and its treatment. Klin. Wochenschr. 1960, 17, 856.
  • [49] R.S. Stoner, T.G. Tong, R. Dart, J.B. Sullivan, G. Saito, E. Armstrong, Acute chromium intoxication with renal failure after 1% body area burns from chromic acid. Vet. Hum. Toxicol. 1994, 30, 361.
  • [50] S.R. Cohen, R.S. Kramkowski, Health hazard evaluation determination. Nr 72-118-l04. Department of Health, Education and Welfare (US), National Institute for Occupational Safety and Health, Cincinnati (OH) 1973.
  • [51] http://medpr.imp.lodz.pl/Narazenie-zawodowe-na-zwiazki-chromu-VI,58332,0,1.html, [dostęp: 11.07. 2019].
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de6c8cf3-081d-4d54-a54b-28ea193668b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.