PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geochemistry of the Groundwater of the Temara Aquifer (North-West Morocco)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Water is a major strategic issue and a key factor in sustainable development for all countries around the world. In Morocco, groundwater has a major importance in the national economic policy. For this reason, sustainable water resources management programs are periodically installed to prevent their qualitative and quantitative degradation, which conditions future development and is part of the research strategy to optimize and mitigate environmental problems. The Temara water table, which extends over nearly 350 km2 is part of these water resources that must be preserved. This issue is of increasing concern to researchers and decision makers in the field of water resources management. The hydrochemical study carried out on 48 samples taken in the study area during a sampling campaign carried out during the low water period showed that the water table has facies of chloride and sulphate calcic and magnesian type according to the Piper diagram. While the classification diagrams of Wilcox and Richards waters revealed the suitability of these waters for irrigation except for some points that present high contents of Nitrate (NO3-), Magnesium (Mg2+), Sulphate (SO42-) and Chloride (Cl-), linked to both the lithological nature of the enclosing formations and the effect of the agricultural activity which induces the phenomenon of return of irrigation water loaded with salts from the fertilizers used, towards the water table.
Twórcy
  • Department of Geology, Ben M’sik, Faculty of Sciences, Hassan II University, Casablanca 20000, Morocco
  • Department of Geology, Ben M’sik, Faculty of Sciences, Hassan II University, Casablanca 20000, Morocco
  • Department of Geology, Ben M’sik, Faculty of Sciences, Hassan II University, Casablanca 20000, Morocco
  • Department of Geology Biology Ecole Normale Supérieure (ENS), Hassan II University, Casablanca 20000, Morocco
  • Department of Geology, Ben M’sik, Faculty of Sciences, Hassan II University, Casablanca 20000, Morocco
Bibliografia
  • 1. Akil M. 1980. Contribution to the sedimentological study of Quaternary coastal formations in the region of Rabat (Morocco). D.E.S. Mohmed V University, Rabat, 212.
  • 2. Amraoui F. 2000. Hydrochemical study of the Skhirate-Témara and coastal Chaouia aquifers (Moroccan Meseta). Bulletin of the Scientific Institute, 22, 71–80.
  • 3. Aravinthasamy P., Karunanidhi D., Subramani T., Anand B., Roy P.D., Srinivasamoorthy K. 2019 b. Fluoride contamination in groundwater of the Shanmuganadhi River Basin (South India) and its association with other chemical constituents using Geographical Information System and multivariate statistics. Geochemistry. https://doi.org/10.1016/j.chemer.2019.125555
  • 4. Arya S., Subramani T., Vennila G., et Roy Priyadarsi D. 2020. Groundwater vulnerability to pollution in the Semi-Arid Vattamalaikarai river basin of South India Thorough DRASTIC Index evaluation. Chemie der Erde (December 2019), 125635. https://doi.org/10.1016/j.chemer.2020.125635
  • 5. Beaudet G. 1969. The central Moroccan plateau and its borders: Geomorphological study. Doctoral thesis. Mohammed V University, Rabat, 480.
  • 6. Beaudet G., Maurer G., Ruellan A. 1967. The Moroccan Quaternary. New observations and hypotheses. Journal of Physical Geography and Dynamic Geology, 2, 9(4), 269–310.
  • 7. Bekkoussa B., Jourde H., Batiot-Guilhe C., Meddi M., Khaldi A., Azzaz H. 2013. Origine de la salinité et des principaux éléments majeurs des eaux de la nappe phréatique de la plaine de Ghriss, Nord-Ouest Algérien. Hydrological Sciences Journal, 58(5), 1111–1127.
  • 8. Belghiti M.L., Chahlaoui A., Bengoumi D., El Moustaine R. 2013. Etude de la qualité physico۔Chimique et bactériologique des eaux souterraines de la nappe Plio-quaternaire dans la région de Meknès (MAROC) Larhyss Journal, 14, 21–36.
  • 9. Belkhir M., Boubaker S., Derouiche I. 2014. Control–ownership wedge, board of directors, and the value of excess cash. Economic Modelling, 39, 110–122.
  • 10. Bounouira H. 2007. Etude des qualités chimiques et géochimiques du bassin versant de Bouregreg. Géochimie. Université Pierre et Marie Curie - Paris VI, 2007, 288.
  • 11. Combe M. 1963. Hydrogeological study of the Lalla Mimouna region. Kenitra: National Office for Irrigation.
  • 12. Couture I. 2004. Analyse d’eau pour fin d’irrigation MAPAQ Montérégie-Est. https://www.agrireseau.net/petitsfruits/documents/analyse%20eau.pdf
  • 13. El Hajraoui M.A., Nespoulet R., Debénath A., Dibble H.L. 2012. Préhistoire de la région de Rabat-Témara. Institut National des Sciences de l’Archéologie et du Patrimoine, 3(300).
  • 14. Fathi A. 2018. Mémoire de licence El Menzeh: Analyse d’une commune rurale périphérique. Rapport de licence Université Internationale de Rabat.
  • 15. Gouaidia L. 2008. Influence de la lithologie et des conditions climatiques sur la variation des paramètres physico-chimiques des eaux d’une nappe en zone semi-aride, cas de la nappe de Meskiana NordEst Algérien. Thèse de doc., Univ. Badji Mokhtar Annaba, Algérie, 199.
  • 16. Guilcher A., Joly F. 1954. Research on the morphology of the Atlantic coast of Morocco. Trav. Inst. Sc., Ser. Geol. Géo.Phy., Morocco, 2, 140.
  • 17. Hamza M.H., Added A., Francés A., Rodríguez R. 2007. Validité de l’application des méthodes de vulnérabilité DRASTIC, SINTACS et SI à l’étude de la pollution par les nitrates dans la nappe phréatique de Metline–Ras Jebel–Raf Raf (Nord-Est tunisien). Comptes Rendus Geoscience, 339(7), 493–505.
  • 18. Hattab M. 2019. Integration of water pollution indices and DRASTIC model for assessment of groundwater quality in El Fayoum depression, Western Desert, Egypt. Journal of African Earth Sciences, 158(July), 103554. https://doi.org/10.1016/j.jafrearsci.2019.103554
  • 19. Latifi S. 2018. Etude de la vulnérabilité des nappes aquifères de la région de Guelma et évaluation du rôle des STEP dans la protection des eaux. Faculté des Sciences de la Terre, Département de géologie, Université Badji Mokhtar-Annaba Thèse doctorat en Sciences, 159.
  • 20. L’Hopitault J.C., Philippo A., Pommery J., Thomas P., Erb F. 1981. Evolution d’une eau de surface au cours des traitements de potabilisation. Comportement des espèces métalliques au contact des matières humiques. Journal français d’hydrologie, 12(1), 7–27.
  • 21. Li P., He S., Yang N., Xiang G. 2018. Groundwater quality assessment for domestic and agricultural purposes in Yan’an City, northwest China: implications to sustainable groundwater quality management on the Loess Plateau. Environ. Earth Sci., 77(23), 775. https://doi.org/10.1007/s12665-018-7968-3
  • 22. Mariotti A. 1994. Dénitrification in situ dans les eaux souterraines, processus naturels ou provoqués. Revue. Hydrogéologie, 43–68.
  • 23. Mhiri A. 2002. Le potassium dans les sols de Tunisie. Atelier sur la gestion de la fertilisation potassique, acquis et perspectives de la recherche Tunis. Institut National Agronomique de Tunisie.
  • 24. Mizi A. 2006. Traitement des eaux de rejets d’une raffinerie des corps gras région de Bejaia et valorisation de déchets oléicoles. Thèse de doctorat d’état, Université d’Annaba, Algérie, 26–27.
  • 25. Najib S. 2014. Etude de l’évolution de la salinisation de l’aquifère de la Chaouia côtière (Azemmour-Bir Jdid, Maroc): climatologie, hydrogéologie, hydrochimie et tomographie électrique. Université Chouaïb Doukkali Faculté des Sciences El Jadida SPECIALITE : Hydrogéologie – Géophysique, 287.
  • 26. OMS. 2011. Guildelines for Drinking-Water Quality (4th edn). OMS: Geneva.
  • 27. Piper, A.M. 1944. A graphic procedure in the geochemical interpretation of water analyses. Trans. Am. Geophys. Union, 25, 914–923.
  • 28. Potelon, J.L., Zyman, K. 1998. Le guide des analyses d’eau potable, la lettre du cadre territorial.
  • 29. Rabilou S.M., Malam alma, M.M., Laouali, M.S., Natatou, I., et Habou, I. 2018. Caractérisation physico-chimique des eaux des aquifères du Continental Intercalaire / Hamadien et du ContinentalsiemsTerminal de la région de Zinder (Niger).
  • 30. Richards L.A. 1954. Diagnosis and improvement of saline and alkali soils. Agric. Handbook 60, USDA and IBH Pub, Coy Ltd., New Delhi, Inde. Agric. Handb., 60, 98–99. 10106049.2019.1690057., Washington D.C., 160.
  • 31. Rodier F., Coppé J.P., Patil C.K., Hoeijmakers W.A., Muñoz D.P., Raza S.R., Campisi J. 2009. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nature cell biology, 11(8), 973–979.
  • 32. Rodier J., Bazing C., Broutin J.P., Chambon P., Champsaur H., Rodi, L. 2005. L’analyse de l’eau, eaux naturelles, eaux résiduaires, eau de mer, chimie, physico-chimie, microbiologie, biologie, interprétation des résultats. Ed. Dunod, Paris, 1384.
  • 33. Rodier J. 1996. Rodier Jean. L’analyse de l’eau : eaux naturelles, eaux résiduaires, eau de mer : chimie, physico-chimie, microbiologie, biologie, interprétation des résultats. 8e édition. Paris: Dunod, 1996.
  • 34. Ronalad V. 2003. Eau, Environnement et Santé Publique, 2ème édition, Ed TEC& DOC, PARIS.
  • 35. Sadeq M., Elbarghmi M., Abourich R., Taazzouzte M. 2021. Tacking stock of the use of drinking well waters and natural spring waters in Morocco: a commentary. Pan African Medical Journal (PAMJ - One Health), 6(12). https://doi.org/10.11604/pamj-oh.2021.6.12.31412
  • 36. Stearns C.E. 1978. Pliocene-Pleistocene emergence of the Moroccan Meseta. Geological SoGciety of the American Bulletin, 89, 1630–1644.
  • 37. Souleymane I.M.S.., Abdou Babaye M.S., Alhassane I., Boureima O. 2020. Caractérisations hydrogéochimiques et qualités des eaux de la nappe phréatique du haut bassin versant de la Korama, commune de Droum /région de Zinder (Niger /Afrique de l’Ouest), int. J. Biol. Chem. Sci., 14(5), 1862–1877.
  • 38. Taazzouzte M., Ghafiri A., Lemacha H., El Moutaki S. 2021. Mapping Intrinsic Vulnerability to Pollution Using the DRASTIC Method in the SkhirateTémara Groundwater (Northwestern Morocco). International Journal of Agricultural and Environmental Information Systems, 12(4).
  • 39. Taazzouzte M., Ghafiri A., Lemacha H., El Moutaki S. 2020. Study of intrinsic vulnerability to pollution by the GOD-Foster method: application to Skhirate- Témara groundwater (Morocco). GEP, 8(8), 129–142.
  • 40. Todd, D.K. 1980. Groundwater Hydrology (2nd edn). Wiley: New York; 535.
  • 41. Tomer T., Deeksha K., Varun J. 2019. Sensitivity analysis of groundwater vulnerability using DRASTIC method: A case study of national capital territory, Delhi, India. Groundwater for Sustainable Development, 9(July), 100271. https://doi.org/10.1016/j.gsd.2019.100271
  • 42. Voudouris K., Kazakis N., Polemio M., Kareklas K. 2010. Assessment of intrinsic vulnerability usin the DRASTIC model and GIS in the Kiti Aquifer. Cyprus. European Water, 3, 13–24.
  • 43. Wang D., Wu J., Wang Y., Ji Y. 2019. Finding high-quality groundwater resources to Reduce the Hydatidosis incidence in the Shiqu County of Sichuan Province, China: Analysis, assessment, and management. Expo. Health. https://doi.org/10.1007/s12403-019-00314-y
  • 44. Weisrock D.W., Smith S.D., Chan L.M., Biebouw K., Kappeler P.M., Yoder A.D. 2012. Concatenation and concordance in the reconstruction of mouse lemur phylogeny: an empirical demonstration of the effect of allele sampling in phylogenetics. Molecular Biology and Evolution, 29(6), 1615–1630.
  • 45. Weisrock A., Fontugne M. 1991. Coastal aeolian morphogenesis in the upper pleistocene and the holocene in the Moroccan Atlantic Ooulja. Quaternary, 2(3–4), 164–175. https://doi.org/10.3406/quate.1991.1965
  • 46. Wilcox L.V. 1955. Classification and use of irrigation waters. USDA, Circular 969, Washington.
  • 47. WRI. 2015. World Ressources Institutes. Classement des pays les plus stressés en eau au monde.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de6aadfe-c312-49e6-a631-cd85bfaeaeb6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.