PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Forced and free vibrational analysis of viscoelastic nanotubes conveying fluid subjected to moving load in hygro-thermo-magnetic environments with surface effects

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Forced and free vibrational analyses of viscoelastic nanotubes containing fluid under a moving load in complex environments incorporating surface effects are conducted based on the nonlocal strain gradient theory and the Rayleigh beam model. To model the internal nanoflow, the slip boundary condition is employed. Adopting the Galerkin discretization approach, the reduced-order dynamic model of the system is acquired. Analytical and numerical methods are exploited to determine the dynamic response of the system. The impacts of geometry, scale parameter ratio, Knudsen number, fluid velocity, rotary inertia parameter, viscoelastic parameter, surface residual stress, surface elastic modulus, and hygro-thermo-magnetic environments on the dynamic magnification factor, critical moving load speed, cancellation, and maximum free vibration of the system are evaluated. The results indicate that the effects of the viscoelastic parameter on the dynamic behavior of the system differ significantly from those of other parameters. It is indicated that the dynamic magnification factor and critical moving load speed are enhanced by increasing the surface residual stress and the surface elastic modulus. The model and results of the current investigation can serve as a comprehensive benchmark for the optimum design of nanoflow sensors and targeted drug delivery systems.
Rocznik
Strony
art. no. e172, 2022
Opis fizyczny
Bibliogr. 54 poz., wykr.
Twórcy
  • Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
  • Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
  • Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
  • Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
Bibliografia
  • [1] Esbati AH, Irani S. Probabilistic mechanical properties and reliability of carbon nanotubes. Arch Civ Mech Eng. 2018;18:532–45.
  • [2] Yu D, Wang R. An optimal investigation of convective fluid flow suspended by carbon nanotubes and thermal radiation impact. Mathematics. 2022;10:1542. https:// doi. org/ 10. 3390/ math10091542.
  • [3] Soleimani I, Beni YT. Vibration analysis of nanotubes based on two-node size-dependent axisymmetric shell element. Arch Civ Mech Eng. 2018;18:1345–58.
  • [4] Rouhi S, Shahnazari A, Ansari R. Vibrational analysis of armchair phosphorene nanotubes by a DFT-based finite element model. Arch Civ Mech Eng. 2018;18:611–21.
  • [5] Elaikh TE, Abed NM, Ebrahimi-Mamaghani A. Free vibration and flutter stability of interconnected double graded micro pipes system conveying fluid. In: IOP conference series: materials science and engineering; 2020, p. 022128.
  • [6] Borjalilou V, Asghari M, Bagheri E. Small-scale thermoelastic damping in micro-beams utilizing the modified couple stress theory and the dual-phase-lag heat conduction model. J Therm Stresses. 2019;42:801–14.
  • [7] Li M, Cai Y, Fan R, Wang H, Borjalilou V. Generalized thermoelasticity model for thermoelastic damping in asymmetric vibrations of nonlocal tubular shells. Thin-Walled Struct. 2022;174: 109142.
  • [8] Borjalilou V, Asghari M, Taati E. Thermoelastic damping in nonlocal nanobeams considering dual-phase-lagging effect. J Vib Control. 2020;26:1042–53.
  • [9] Xiao C, Zhang G, Hu P, Yu Y, Mo Y, Borjalilou V. Size-dependent generalized thermoelasticity model for thermoelastic damping in circular nanoplates. Waves Random Complex Media. 2021. https://doi.org/10.1080/17455030.2021.1968538.
  • [10] Borjalilou V, Taati E, Ahmadian MT. Bending, buckling and free vibration of nonlocal FG-carbon nanotube-reinforced composite nanobeams: Exact solutions. SN Appl Sci. 2019;1:1–15.
  • [11] Li M, Cai Y, Bao L, Fan R, Zhang H, Wang H, et al. Analytical and parametric analysis of thermoelastic damping in circular cylindrical nanoshells by capturing small-scale effect on both structure and heat conduction. Arch Civ Mech Eng. 2022;22:1–16.
  • [12] Sarparast H, Mamaghani A, Safarpour M, Ouakad HM, Dimitri R, Tornabene F. Nonlocal study of the vibration and stability response of small-scale axially moving supported beams on viscoelastic-Pasternak foundation in a hygro-thermal environment. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.6859.
  • [13] Ghayesh MH, Farokhi H, Farajpour A. Chaos in fluid-conveying NSGT nanotubes with geometric imperfections. Appl Math Model. 2019;74:708–30.
  • [14] Farajpour A, Ghayesh MH, Farokhi H. Large-amplitude coupled scale-dependent behaviour of geometrically imperfect NSGT nanotubes. Int J Mech Sci. 2019;150:510–25.
  • [15] Zheng F, Lu Y, Ebrahimi-Mamaghani A. Dynamical stability of embedded spinning axially graded micro and nanotubes conveying fluid. Waves Random Complex Media. 2020;32:1–39. https://doi.org/10.1080/17455030.2020.1821935.
  • [16] Sarparast H, Alibeigloo A, Kesari SS, Esfahani S. Size-dependent dynamical analysis of spinning nanotubes conveying magnetic nanoflow considering surface and environmental effects. Appl Math Model. 2022. https://doi.org/10.1016/j.apm.2022.03.017.
  • [17] Sun L, Wang G, Zhang C, Jin Q, Song Y. On the rheological properties of multi-walled carbon nano-polyvinylpyrrolidone/silicon-based shear thickening fluid. Nanotechnol Rev. 2021;10:1339–48. https://doi.org/10.1515/ntrev-2021-0087.
  • [18] Ghayesh MH. Dynamics of functionally graded viscoelastic microbeams. Int J Eng Sci. 2018;124:115–31.
  • [19] Ghayesh MH. Viscoelastic mechanics of Timoshenko functionally graded imperfect microbeams. Compos Struct. 2019;225: 110974.
  • [20] Ghayesh MH. Viscoelastic dynamics of axially FG microbeams. Int J Eng Sci. 2019;135:75–85.
  • [21] Amiri A, Masoumi A, Talebitooti R. Flutter and bifurcation instability analysis of fluid-conveying micro-pipes sandwiched by magnetostrictive smart layers under thermal and magnetic field. Int J Mech Mater Des. 2020;16:569–88.
  • [22] Jena SK, Chakraverty S, Malikan M, Mohammad-Sedighi H. Hygro-magnetic vibration of the single-walled carbon nanotube with nonlinear temperature distribution based on a modified beam theory and nonlocal strain gradient model. Int J Appl Mech. 2020;12:2050054.
  • [23] Rahimi Z. Vibration analysis of curved nanotube conveying fluid and nanoparticle considering surface and non-local effects. Waves Random Complex Media. 2021. https://doi.org/10.1080/17455030.2021.1939459.
  • [24] Yue X, Yue X, Borjalilou V. Generalized thermoelasticity model of nonlocal strain gradient Timoshenko nanobeams. Arch Civ Mech Eng. 2021;21:1–20.
  • [25] Weng W, Lu Y, Borjalilou V. Size-dependent thermoelastic vibrations of Timoshenko nanobeams by taking into account dual-phase-lagging effect. Eur Phys J Plus. 2021;136:1–26.
  • [26] Ghayesh M, Farokhi H, Zhang Y, Gholipour A. Nonlinear coupled moving-load excited dynamics of beam-mass structures. Arch Civ Mech Eng. 2020;20:1–11.
  • [27] Lu N, Wang H, Wang K, Liu Y. Maximum probabilistic and dynamic traffic load effects on short-to-medium span bridges. Comput Model Eng Sci. 2021;127:345–60. https://doi.org/10.32604/cmes.2021.013792.
  • [28] Luo Y, Zheng H, Zhang H, Liu Y. Fatigue reliability evaluation of aging prestressed concrete bridge accounting for stochastic traffic loading and resistance degradation. Adv Struct Eng. 2021;24:3021–9. https://doi.org/10.1177/13694332211017995.
  • [29] Sarparast H, Ebrahimi-Mamaghani A. Vibrations of laminated deep curved beams under moving loads. Compos Struct. 2019;226: 111262.
  • [30] Hosseini M, Maryam AZB, Bahaadini R. Forced vibrations of fluid-conveyed double piezoelectric functionally graded micropipes subjected to moving load. Microfluid Nanofluid. 2017;21:1–16.
  • [31] Yoon H-I, Son I-S. Dynamic behavior of cracked simply supported pipe conveying fluid with moving mass. J Sound Vib. 2006;292:941–53.
  • [32] Vakili Tahami F, Biglari H, Raminnea M. Optimum design of FGX-CNT-reinforced Reddy pipes conveying fluid subjected to moving load. J Appl Comput Mech. 2016;2:243–53.
  • [33] Ghayesh MH. Asymmetric viscoelastic nonlinear vibrations of imperfect AFG beams. Appl Acoust. 2019;154:121–8.
  • [34] Ghayesh MH. Nonlinear dynamic response of a simply-supported Kelvin-Voigt viscoelastic beam, additionally supported by a nonlinear spring. Nonlinear Anal Real World Appl. 2012;13:1319–33.
  • [35] Borjalilou V, Asghari M. Mathematical Modeling of Anisotropic Hyperelastic Cylindrical Thick Shells by Incorporating Thickness Deformation and Compressibility with Application to Arterial Walls. In: International Journal of Structural Stability and Dynamics; 2022, p. 2250141.
  • [36] Ebrahimi-Mamaghani AE, Khadem S, Bab S. Vibration control of a pipe conveying fluid under external periodic excitation using a nonlinear energy sink. Nonlinear Dyn. 2016;86:1761–95.
  • [37] Ebrahimi-Mamaghani A, Sotudeh-Gharebagh R, Zarghami R, Mostoufi N. Dynamics of two-phase flow in vertical pipes. J Fluids Struct. 2019;87:150–73.
  • [38] Ebrahimi-Mamaghani A, Mostoufi N, Sotudeh-Gharebagh R, Zarghami R. Vibrational analysis of pipes based on the drift-flux two-phase flow model. Ocean Eng. 2022;249: 110917.
  • [39] Zhou Z-X, Koochakianfard O. Dynamics of spinning functionally graded Rayleigh tubes subjected to axial and follower forces in varying environmental conditions. Eur Phys J Plus. 2022;137:1–35.
  • [40] Gao F, Yu D, Sheng Q. Analytical treatment of unsteady fluid flow of nonhomogeneous nanofluids among two infinite parallel surfaces: collocation method-based study. Mathematics. 2022;10:1556. https://doi.org/10.3390/math10091556.
  • [41] Wang L. Vibration analysis of fluid-conveying nanotubes with consideration of surface effects. Phys E. 2010;43:437–9.
  • [42] Zhang H, Liu Y, Deng Y. Temperature gradient modeling of a steel box-girder suspension bridge using Copulas probabilistic method and field monitoring. Adv Struct Eng. 2021;24:947–61. https://doi.org/10.1177/1369433220971779.
  • [43] Xiao G, Chen B, Li S, Zhuo X. Fatigue life analysis of aero-engine blades for abrasive belt grinding considering residual stress. Eng Fail Anal. 2022;131: 105846.
  • [44] Cheng H, Liu L, Sun L. Bridging the gap between laboratory and field moduli of asphalt layer for pavement design and assessment: A comprehensive loading frequency-based approach. Front Struct Civ Eng. 2022. https://doi.org/10.1007/s11709-022-0811-7.
  • [45] Xiao X, Bu G, Ou Z, Li Z. Nonlinear in-plane instability of the confined FGP arches with nanocomposites reinforcement under radially-directed uniform pressure. Eng Struct. 2022;252: 113670. https://doi.org/10.1016/j.engstruct.2021.113670.
  • [46] Li L, Hu Y. Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory. Comput Mater Sci. 2016;112:282–8.
  • [47] Kumar CS, Sujatha C, Shankar K. Vibration of simply supported beams under a single moving load: A detailed study of cancellation phenomenon. Int J Mech Sci. 2015;99:40–7.
  • [48] Museros Romero P, Moliner E. Comments on Vibration of simply supported beams under a single moving load: A detailed study of cancellation phenomenon by CP Sudheesh Kumar, C. Sujatha, K. Shankar [Int. J. Mech. Sci. 99 (2015) 40 47. Int J Mech Sci. 2017;128:709–13.
  • [49] Ebrahimi-Mamaghani A, Sarparast H, Rezaei M. On the vibrations of axially graded Rayleigh beams under a moving load. Appl Math Model. 2020;84:554–70.
  • [50] Wang L. Vibration and instability analysis of tubular nano-and micro-beams conveying fluid using nonlocal elastic theory. Phys E. 2009;41:1835–40.
  • [51] Bahaadini R, Hosseini M, Jamali B. Flutter and divergence instability of supported piezoelectric nanotubes conveying fluid. Phys B. 2018;529:57–65.
  • [52] Xia H, Zhang N, Guo W. Analysis of resonance mechanism and conditions of train–bridge system. J Sound Vib. 2006;297:810–22.
  • [53] Ebrahimi-Mamaghani A, Mirtalebi SH, Ahmadian M-T. Magneto-mechanical stability of axially functionally graded supported nanotubes. Mater Res Express. 2020;6:1250c5.
  • [54] Gao N, Zhang Z, Deng J, Guo X, Cheng B, Hou H. Acoustic metamaterials for noise reduction: a review. Adv Mater Technol 2022;2100698. https://doi.org/10.1002/admt.202100698.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de64545b-bf82-4094-8f9a-3e2610a95a4f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.