PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Disinfection By-Products in Swimming Pool Water and Possibilities of Limiting Their Impact on Health of Swimmers

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Produkty uboczne dezynfekcji wody basenowej i możliwości ograniczania ich wpływu na zdrowie użytkowników
Języki publikacji
EN
Abstrakty
EN
The presence of water disinfection by-products (DBPs) in the pool environment is a threat to the health of the users of swimming pools. Due to the mechanism of DBP formation, we are not able to prevent their presence. However, there are several ways to prevent the harmful effects of DBPs on the health of pool users; among these, various kinds of methods that result in the reduction of combined chlorine and DBPs precursors should be mentioned. And last but not least, a new approach to the design of the ventilation system for indoor swimming pools seems to be crucial for the above-mentioned purpose.
PL
Obecność produktów ubocznych dezynfekcji wody (DBPs) w środowisku basenowym jest zagrożeniem dla zdrowia użytkowników pływalni. Z uwagi na mechanizm formowania DBPs nie jesteśmy w stanie zapobiec ich powstawaniu. Istnieje jednak kilka możliwości zapobiegania szkodliwemu wpływowi DBPs na zdrowie użytkowników basenów, wśród których należy wymienić różne rodzaje metod redukcji prekursorów chloru związanego i DBPs oraz nowe podejście do projektowania rozdziału powietrza wentylacyjnego.
Rocznik
Strony
71--92
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
  • Poznan University of Technology, Faculty of Civil and Environmental Engineering, Institute of Environmental Engineering, Poznań, Poland
  • Poznan University of Technology, Faculty of Civil and Environmental Engineering, Institute of Environmental Engineering, Poznań, Poland
Bibliografia
  • [1] Rozporządzenie Ministra Zdrowia z dnia 9 listopada 2015 r. w sprawie wymagań, jakim powinna odpowiadać woda na pływalniach. Dz.U. 2015, poz. 2016 [Regulation of the Minister of Health of 9 November 2015 on the requirements to be met by water in swimming pools. Journal of Laws 2015, item 2016].
  • [2] Nawrocki J., Biłozora S. (red.): Uzdatnianie wody: procesy chemiczne i biologiczne. Wydawnictwo Naukowe PWN, Warszawa – Poznań 2000.
  • [3] Carter R.A.A., Joll C.A.: Occurance and formation of disinfection by-products in the swimming pool environment: A critical review. Journal of Environmental Sciences, vol. 58, 2017, pp. 19–50.
  • [4] Fantuzzi G., Righi E., Predieri G., Ceppelli G., Gobba F., Aggazzotti G.: Occupational exposure to trihalomethanes in indoor swimming pools. The Science of the Total Environment, vol. 264, 2001, pp. 257–265.
  • [5] Y. E., Bai H., Lian L., Li J., Blatchley E.R.: Effect of chloride on the formation of volatile disinfection byproducts in chlorinates swimming pools. Water Research, vol. 105, 2016, pp. 413–420.
  • [6] Florentin A., Hautemaniere A., Hartemann P.: Health effects of disinfection by-products in chlorinated swimming pools. International Journal of Hygiene and Environmental Health, vol. 214, 2011, pp. 461–469.
  • [7] Simard S., Tardif R., Rodriguez M.J.: Variability of chlorination by-product occurrence in water of indoor and outdoor swimming pools. Water Research, vol. 47(5), 2013, pp. 1763–1772.
  • [8] Caro J., Gallego M.: Alveolar air and urine analyses as biomarkers of exposure to trihalomethanes in an indoor swimming pool. Environmental Science Technology, vol. 42, 2008, pp. 5002–5007.
  • [9] Dyck R., Sadiq R., Rodriguez M.J., Simard S., Tardif R.: Trihalomethane exposures in indoor swimming pools: A level III fugacity model. Water Research, vol. 45, 2011, pp. 5084–5098.
  • [10] Lourencetti C., Grimalt J.O., Marco E., Fernandez P., Font-Ribera L., Villanueva C.M., Kogevinas M.: Trihalomethanes in chlorine and bromine disinfected swimming pools: Air-water distributions and human exposure. Environment International, vol. 45, 2012, pp. 59–67.
  • [11] Afifi M.A., Blatchley III E.R.: Seasonal dynamics of water and air chemistry in an indoor chlorinated swimming pool. Water Research, vol. 68, 2015, pp. 771–783.
  • [12] Erdinger L., Kühn K.P., Kirsch F., Feldhues R., Fröbel T., Nohynek B., Gabrio T.: Pathways of trihalomethane uptake in swimming pools. International Journal of Hygiene and Environmental Health, vol. 207, 2004, pp. 571–575.
  • [13] Cardador M.J., Gallego M.: Haloacetic acids in swimming pools: swimmer and worker exposure. Environmental Science and Technology, vol. 45, 2011, pp. 5783–5790.
  • [14] Lourencetti C., Ballester C., Fernández P., Marco E., Prado C., Periago J.F., Grimalt J.O.: New method for determination of trihalomethanes in exhaled breath: applications to swimming pool and bath environments. Analytica Chimica Acta, vol. 662, 2010, pp. 23–30.
  • [15] Carraro S., Pasquale M.F., Da Frè M., Rusconi F., Bonetto G., Zanconato S., Baraldi E.: Swimming pool attendance end exhaled nitric oxide in children. Journal of Allergy and Clinical Immunology, vol. 118, 2006, pp. 950–960.
  • [16] Jacobs J.H., Spaan S., van Rooy G.B., Meliefste C., Zaat V.A., Rooyackers J.M., Heederik D.: Exposure to trichloramine and respiratory symptoms in indoor swimming pool workers. European Respiratory Journal, vol. 29, 2007, pp. 690–698.
  • [17] Li J., Blatchley III E.R.: Volatile disinfection byproduct formation resulting from chlorination of organic-nitrogen precursors in swimming pools. Environmental Science and Technology, vol. 41, 2007, pp. 6732–6739.
  • [18] Hamidin N., Yu Q.J., Connell D.: Human health risk assessment of chlorinated disinfection by-products in drinking water using a probabilistic approach. Water Research, vol. 42, 2008, pp. 3263–3274.
  • [19] International Agency for Research on Cancer: IARC monograph on the evaluation of carcinogenic risks to humans. Some drinking-water disinfectants and contaminants, including arsenic. IARC Press, Lyon, France 2004.
  • [20] Villanueva C.M., Cantor K.P., Grimalt J.O., Malats N., Silverman D., Tardon A., Garcia-Closas R., Serra C., Carrato A., Castaño-Vinyals G., Marcos R., Rothman N., Real F.X., Dosemeci M., Kogevinas M.: Bladder cancer and exposure to water disinfection by-products through ingestion, bathing, showering and swimming pool attendance. American Journal of Epidemiology, vol. 165, 2007, pp. 148–156.
  • [21] Aggazzotti G., Righi E., Fantuzzi G., Biasotti B., Ravera G., Kanitz S., Barbone F., Sansebastiano G., Battaglia M.A., Leoni V., Fabiani L., Triassi M., Sciacca S.: Chlorination by-products (CBPs) in drinking water and adverse pregnancy outcomes in Italy. Journal of Water Health, no. 2, 2004, pp. 1–15.
  • [22] Nieuwenhuijsen M.J., Northstone K., Golding J.: Swimming and birth weight. Epidemiology, vol.13, no. 6, 2002, pp. 725–728.
  • [23] Kim H., Shim J., Lee S.: Formation of disinfection by-products in chlorinated swimming pool water. Chemosphere, vol. 46, 2002, pp. 123–130.
  • [24] Lee J., Ha K.-T., Zoh K.-D.: Characteristic of trihalomethane (THM) production and associated health risk assessment in swimming pool waters treated with different disinfection methods. Science of the total Environment, vol. 407, 2009, pp. 1990–1997.
  • [25] Schmalz C., Frimmel F.H., Zwiener C.: Trichloramine in swimming pools – Formation and mass transfer. Water Research, vol. 45, 2011, pp. 2681–2690.
  • [26] Richardson S.D., DeMarini D.M., Kogevinas M., Fernandez P., Marco E., Lourencetti C., Ballesté C., Heederik D., Meliefste K., McKague A.B., Marcos R., Font-Ribera L., Grimalt J.O., Villanueva C.M.: What’s in the Pool? A Comprehensive Identification of Disinfection By-Products and Assessment of Mutagenicity of Chlorinated and Brominated Swimming Pool Water. Environmental Health Perspectives, vol. 118(11), 2010, pp. 1523–1530.
  • [27] Weaver W.A., Li J., Johnston J., Blatchley M.R., Blatchley III E.R.: Volatile disinfection by-product analysis from chlorinated indoor swimming pools. Water Research, vol. 43, 2009, pp. 3308–3318.
  • [28] Ratajczak K.: Układy wentylacyjne krytych basenów kąpielowych w aspekcie energooszczędności. Wydawnictwo Politechniki Poznańskiej, Poznań 2016.
  • [29] Kolaszewski A., Więcek K.: System klimatyzacji hali basenowej. Instal, nr 3, 2008, pp. 24–26.
  • [30] Sabiniak H.G., Pietras M.: Wymagania stawiane instalacjom klimatyzacyjnym w halach basenowych. Ciepłownictwo, Ogrzewnictwo, Wentylacja, r. 36, nr 1, 2005, pp. 28–33.
  • [31] Ratajczak K., Szczechowiak E.: Energy Efficient HVAC System in the Indoor Swimming Pool Facilities. [in:] Proceedings of CLIMA 2013: 11th REHVA World Congress & 8th International Conference on IAQVEC “Energy efficient, smart and healthy buildings”, Prague, Czech Republic, June 16-19, 2013, Society of Environmental Engineering, 2013, pp. 722-1–722-10.
  • [32] Ratajczak K., Szczechowiak E.: Installation of decentralized ventilation system for ventilation of an indoor swimming pool. [in:] Heiselberg P.K. (ed.), CLIMA 2016 – proceedings of the 12th REHVA World Congress: volume 5, Aalborg University, Department of Civil Engineering, Aalborg 2016, paper 261.
  • [33] Hansen M.S., Spiliotopoulou A., Cheema W.A., Andersen H.R.: Effect of ozonation of swimming pool water on formation of volatile disinfection by-products a laboratory study. Chemical Engineering Journal, vol. 289, 2016, pp. 277–285.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de6262a5-2371-4882-9c45-81dd01340ab0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.