PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and Fatigue Life of the Binary Lead-free Alloys with High Zn Content

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of studies presented in this article are an example of the research activity of the authors related to lead-free alloys. The studies covered binary SnZn90 and SnZn95 lead-free alloys, including their microstructure and complex mechanical characteristics. The microstructure was examined by both light microscopy (LM) and scanning electron microscopy (SEM). The identification of alloy chemical composition in micro-areas was performed by SEM/EDS method. As regards light microscopy, the assessment was of both qualitative and quantitative character. The determination of the geometrical parameters of microstructure was based on an original combinatorial method using phase quantum theory. Comprehensive characterization of mechanical behavior with a focus on fatigue life of alloys was performed by means of the original modified low cycle fatigue method (MLCF) adapted to the actually available test machine. The article discusses the fatigue life of binary SnZn90 and SnZn95 alloys in terms of their microstructure. Additionally, the benefits resulting from the use of the combinatorial method in microstructure examinations and MLCF test in the quick estimation of several mechanical parameters have been underlined.
Rocznik
Strony
65--70
Opis fizyczny
Bibliogr. 14 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Precision Mechanics, 3 Duchnicka Str., 01-796 Warsaw, Poland
autor
  • Motor Transport Institute, 80 Jagiellońska Str., 03-301 Warsaw, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, 23 Reymonta Str., 30-059 Cracow, Poland
autor
  • Institute of Precision Mechanics, 3 Duchnicka Str., 01-796 Warsaw, Poland; Foundry Research Institute, 73 Zakopiańska Str., 30-418 Cracow, Poland
Bibliografia
  • [1] Schmetterer, C., Ipser, H., Pearce, J. (2008). Lead-Free Solders: Handbook of Properties of SAC Solders and Joints. ELFNET COST 531+Lead-Free solders vol. 2, ISBN: 978-80-86292-27-4.
  • [2] Kroupa, A. (2012). Handbook of High-Temperature Lead-Free Solders. Volume 3: Group Project Reports. COST MP0602, ISBN: 978-80-905363-3-3.
  • [3] Kotadia, H.R., Howes, P.D. & Mannan, S.H. (2014). A review: On the development of low melting temperature Pb-free solders. Microelectronics Reliability. 54, 1253-1273.
  • [4] Zeng, G., McDonald, S., Nogita, K. (2012). Development of high-temperature solders: Review. Microelectronics Reliability. 52, 1306-1322.
  • [5] Lee, J-E., Kim, K-S., Suganuma, K., Inoue, M. & Izuta, G. (2007). Thermal Properties and Phase Stability of Zn-Sn and Zn-In Alloys as High Temperature Lead-Free Solder. Materials Transactions. 48, 3, 584-593.
  • [6] Mahmudi, R. & Eslami, M. (2011). Shear strength of the Zn–Sn high-temperature lead-free solders. J Mater Sci: Mater Electron. 22, 1168-1172.
  • [7] Stamenkovic, U.S., Markovic, I., Dimitrijevic, M., Medic, D. (2017). SEM and EDS investigation of Zn-Sn alloys as potential high temperature lead-free solder. Proceedings of XXV International Conference “Ecological Truth” ECO-IST’17 (pp. 196-201).
  • [8] Park, S. (2013). High-power semiconductor die-attachment : Application of Zn with minor metal additions. Ph.D. Dissertation.
  • [9] Suganuma, K., Kim, S-J. & Kim, K.-S. (2009). High-Temperature Lead-Free Solders: Properties and Possibilities. JOM. 64-71.
  • [10] Kudyba, A., Siewiorek, A., Sobczak, N. (2012). Effect of zinc content and temperature on nickel solderability with Sn-xZn (x = 4.5, 90, 95 wt%) alloys. Transactions of Foundry Research Institute. LII, 4, 197-211.
  • [11] Kęsy, B.K. (1990). Microstructure as arrangement of unitary phase parts and stereological parameters Proceedings of 3rd Int. Conference on Stereology In Materials Science, Szczyrk, (pp. 226-231).
  • [12] Maj, M. (2012). Fatigue life of selected foundry alloys. Katowice-Gliwice: Wyd. Archives of Foundry Engineering. (in Polish).
  • [13] Maj, M., Klasik, A., Pietrzak, K. & Rudnik, D. (2015). Modified low-cycle fatigue (LCF) test Metalurgija = Metallurgy. 54(1), 207-210. ISSN 0543-5846.
  • [14] Kocańda, St., Kocańda, A. (1989). Low-cycle fatigue strength of metals. Warsaw: PWN.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de60b2dd-d301-4dcb-b419-7de44ee24ffa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.