PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Comments on existing analytical solutions to the wave-induced cyclic response of a porous seabed of infinite thickness

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with the wave-induced cyclic response of a porous seabed (by means of oscillating parameters: pore-fluid pressure, soil displacement components, effective normal stress and shear stress components) due to a surface sinusoidal water-wave propagating over a seabed of infinite thickness. The main existing analytical solutions to the governing problem are critically discussed, pointing out their meaningful errors and doubtful items. A phase-lag phenomena is particularly studied as an immanent part of any complex-valued analytical solutions having a cyclic nature.
Rocznik
Tom
Strony
197--206
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Department of Geotechnical and Hydraulic Engineering, Poland
Bibliografia
  • 1. M. Foda, “On the extrication of large objects from the ocean bottom (the breakout phenomenon)”, Journal of Fluid Mechanics, Vol. 117, 1982, pp. 211‒231, DOI: 10.1017/ S0022112082001591.
  • 2. J. R. C. Hsu and D.-S. Jeng, “Wave-induced soil response in an unsaturated anisotropic seabed of finite thickness”, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 18, Issue 11, 1994, pp. 785‒807, DOI: 10.1002/nag.1610181104.
  • 3. D.-S. Jeng, Porous Models for Wave-seabed Interactions, Berlin and Heidelberg: Springer, 2013, DOI: 10.1007/978-3-642-33593-8.
  • 4. D.-S. Jeng, Mechanics of Wave-Seabed-Structure Interactions. Modelling, Processes and Applications, Cambridge: Cambridge University Press, 2018, DOI: 10.1017/9781316672266.
  • 5. D.-S. Jeng and J. R. C. Hsu, “Wave-induced soil response in a nearly saturated sea-bed of finite thickness”, Géotechnique, Vol. 46, No. 3, 1996, pp. 427‒440, DOI: 10.1680/geot.1996.46.3.427.
  • 6. O. S. Madsen, “Wave-induced pore pressures and effective stresses in a porous bed”, Géotechnique, Vol. 28, No. 4, 1978, pp. 377‒393, DOI: 10.1680/geot.1978.28.4.377.
  • 7. W. Magda, “Analytical solution for the wave-induced excess pore-pressure in a finite-thickness seabed layer”, Proc. of the 24th Conference on Coastal Engineering (ICCE 1994), American Society of Civil Engineers, 23‒28 October 1994, Kobe, Japan, pp. 3111‒3125, DOI: 10.1061/9780784400890.225.
  • 8. W. Magda, “On importance of sign conventions on analytical solutions to the wave-induced cyclic response of a poro-elastic seabed”, Archives of Civil Engineering, Vol. 69, Issue 4, 2023 (submitted for publication).
  • 9. C. C. Mei and M. A. Foda, “Wave-induced responses in a fluid-filled poro-elastic solid with a free surface — a boundary layer theory”, Geophysical Journal of the Royal Astronomical Society, Vol. 66, Issue 3, September 1981, pp. 597‒631, DOI: 10.1111/j.1365-246X.1981.tb04892.x.
  • 10. J. P. Michalski, “Parametric method applicable in calculating breakout force and time for lifting axisymmetric objects from seabed”, Polish Maritime Research, Vol. 26, No. 3, 2019, pp. 147‒152, DOI: 10.2478/pomr-2019-0055.
  • 11. J. P. Michalski, “Parametric method applicable in assessing breakout force and time for lifting slender bodies from seabed”, Polish Maritime Research, Vol. 27, No. 2, 2020, pp. 69‒75, DOI: 10.2478/pomr-2020-0028.
  • 12. H. Moshagen and A. Tørum, “Wave induced pressures in permeable seabeds”, Journal of the Waterways, Harbors and Coastal Engineering Division, Proc. of the American Society of Civil Engineering (ASCE), Vol. 101, No. WW1, February 1975, pp. 49‒57. DOI: 10.1061/AWHCAR.0000271.
  • 13. S. Okusa, “Wave-induced stresses in unsaturated submarine sediments”, Géotechnique, Vol. 35, No. 4, 1985, pp. 517‒532, DOI: 10.1680/geot.1985.35.4.517.
  • 14. J. A. Putnam, “Loss of wave energy due to percolation in a permeable sea bottom”, Transactions, American Geophysical Union, Vol. 30, No. 3, 1949, pp. 349‒356, DOI: 10.1029/TR030i003p00349.
  • 15. W. Richwien and W. Magda, Design Levels for Offshore Structures. State-of-the-Art and Instantenous PorePressure Model, Forschungsbereich aus dem Fachbereich Bauwesen, Universität – Gesamthochschule Essen, Heft 63, Essen, September 1994. https://drive.google.com/ file/d/1kqLPL_s_MM3Q8oLR5iU5ACPri_YStU3b/view.
  • 16. M. Sumer, Liquefaction Around Marine Structures, Advanced Series on Ocean Engineering – Vol. 39, Singapore: World Scientific Publishing, 2014, DOI: 10.1142/7986.
  • 17. B. M. Sumer and J. Fredsøe, “The Mechanics of Scour in the Marine Environment”, Advanced Series on Ocean Engineering – Vol. 17, Singapore: World Scientific Publishing, 2002, DOI: 10.1142/4942.
  • 18. A. Verruijt, “Elastic storage of aquifers”, in: Flow Through Porous Media, ed. De Wiest, New York and London: Academic Press, 1969, pp. 331‒376. https://www. researchgate.net/publication/258354880.
  • 19. T. Yamamoto, H. L. Koning, H. Sellmeijer and E. van Hijum, “On the response of a poro-elastic bed to water waves”, Journal of Fluid Mechanics, Vol. 87, 1978, pp. 193‒206, DOI: 10.1017/S0022112078003006.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de5a57ec-86e9-41db-b113-24032431bd12
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.