PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The use of agro-industrial residues of coffee (Coffea arabica) for the removal of mercury from water

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Contamination of water bodies by heavy metals is a continuously growing environmental issue. High concentrations of mercury (Hg) in river waters are a recognized environmental problem, because it is one of the most toxic heavy metal ions as it causes damage to the central nervous system. Its negative impact has led to the development of different methods for the treatment of effluents contaminated with Hg(II). The aim of this article is to evaluate the use of coffee (Coffea arabica) residues as adsorbent of Mercury in an aqueous solution. Four kinetic models, including intraparticle diffusion, pseudo-first-order, pseudo-second-order, and Elovich kinetic models were applied to explore the internal mechanism of mercury adsorption. Results indicate that the pseudo-first-order and pseudo-second-order models could accurately describe the adsorption process. It means that chemical adsorption play an important role in the adsorption of mercury by activated carbon. Meanwhile, the external mass transfer process is more effective in controlling the activated carbon mercury adsorption according to the fitting result of the pseudo-first-order model. The fitting to Langmuir’s model suggested that the material surface is energetically homogeneous. The technique of contaminated biomass encapsulation proved to be safe for short-term disposal when metal recovery is not desired.
Wydawca
Rocznik
Tom
Strony
164--171
Opis fizyczny
Bibliogr. 45 poz., tab., wykr.
Twórcy
  • Universidad de Cartagena, Faculty of Engineering, Department of Chemical Engineering, Avenida Del Consulado 48-152, Cartagena 130014, Colombia
  • Universidad del Tolima, Faculty of Agronomic Engineering, Ibagué, Colombia
  • Universidad del Tolima, Faculty of Agronomic Engineering, Ibagué, Colombia
Bibliografia
  • AL-GHOUTI M.A., DA’ANA D., ABU-DIEYEH M., KHRAISHEH M. 2019. Adsorptive removal of mercury from water by adsorbents derived from date pits. Scientific Reports. Vol. 9(1) p. 1–15. DOI 10.1038/s41598-019-51594-y.
  • ALCALA-OROZCO M., CABALLERO-GALLARDO K., OLIVERO-VERBEL J. 2019. Mercury exposure assessment in indigenous communities from Tarapaca village, Cotuhe and Putumayo Rivers, Colombian Amazon. Environmental Science and Pollution Research. Vol. 26 (36) p. 36458–36467. DOI 10.1007/s11356-019-06620-x.
  • AMAN A., AHMED D., ASAD N., MASIH R., ABD UR RAHMAN H.M. 2018. Rose biomass as a potential biosorbent to remove chromium, mercury and zinc from contaminated waters. International Journal of Environmental Studies. Vol. 75(5) p. 774–787. DOI 10.1080/00207233.2018.1429130.
  • ANDRADE H.J., ZAPATA P.C. 2019. Mitigation of climate change of coffee production systems in Cundinamarca, Colombia. Floresta e Ambiente. Vol. 26(3) p. 1–11. DOI 10.1590/2179-8087.012618.
  • ANDRADE H.J.C., SEGURA M.A., FERIA M., SUÁREZ W. 2018. Above-ground biomass models for coffee bushes (Coffea arabica L.) in Líbano, Tolima, Colombia. Agroforestry Systems. Vol. 92(3) p. 775–784. DOI 10.1007/s10457-016-0047-4.
  • ARIAS ARIAS F.E., BENEDUCI A., CHIDICHIMO F., FURIA E., STRAFACE S. 2017. Study of the adsorption of mercury (II) on lignocellulosic materials under static and dynamic conditions. Chemosphere. Vol. 180 p. 11–23. DOI 10.1016/j.chemosphere.2017.03.137.
  • ATALLAH S.S., GÓMEZ M.I., JARAMILLO J. 2018. A bioeconomic model of ecosystem services provision: Coffee berry borer and shade-grown coffee in Colombia. Ecological Economics. Vol. 144 p. 129–138. DOI 10.1016/j.ecolecon.2017.08.002.
  • AYUB S., MOHAMMADI A.A., YOUSEFI M., CHANGANI F. 2019. Performance evaluation of agro-based adsorbents for the removal of cadmium from wastewater. Desalination and Water Treatment. Vol. 142 p. 293–299. DOI 10.5004/dwt.2019.23455.
  • BISLA V., RATTAN G., SINGHAL S., KAUSHIK A. 2020. Green and novel adsorbent from rice straw extracted cellulose for efficient adsorption of Hg (II) ions in an aqueous medium. International Journal of Biological Macromolecules. Vol. 161 p. 194–203. DOI 10.1016/j.ijbiomac.2020.06.035.
  • BONILLA MEJÍA L. 2020. Mining and human capital accumulation: Evidence from the Colombian gold rush. Journal of Development Economics. Vol. 145, 102471. DOI 10.1016/j.jdeveco.2020.102471.
  • CORDY P., VEIGA M.M., SALIH I., AL-SAADI S., CONSOLE S., GARCIA O., MESA L.A., VELÁSQUEZ-LÓPEZ P.C., ROESER M. 2011. Mercury contamination from artisanal gold mining in Antioquia, Colombia: The world’s highest per capita mercury pollution. Science of the Total Environment. Vol. 410–411 p. 154–160. DOI 10.1016/j.scitotenv.2011.09.006.
  • DOKE K.M., KHAN E.M. 2017. Equilibrium, kinetic and diffusion mechanism of Cr(VI) adsorption onto activated carbon derived from wood apple shell. Arabian Journal of Chemistry. Vol. 10. Suppl. 1 p. S252–S260. DOI 10.1016/j.arabjc.2012.07.031.
  • DU Y., WEI M., REDDY K., LIU Z., JIN F. 2014. Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil. Journal of Hazardous Materials. Vol. 271 p. 131–140. DOI 10.1016/j.jhazmat.2014.02.002.
  • EL ASS K. 2018. Adsorption of cadmium and copper onto natural clay: Isotherm, kinetic and thermodynamic studies. Global Nest Journal. Vol. 20(2) p. 198–207. DOI 10.30955/gnj.002352.
  • FARD G.H., MEHRNIA M.R. 2017. Investigation of mercury removal by micro-algae dynamic membrane bioreactor from simulated dental waste water. Journal of Environmental Chemical Engineering. Vol. 5(1) p. 366–372. DOI 10.1016/j.jece.2016.11.031.
  • HUANG N., ZHAI L., XU H., JIANG D. 2017. Stable covalent organic frameworks for exceptional mercury removal from aqueous solutions. Journal of the American Chemical Society. Vol. 139(6) p. 2428–2434. DOI 10.1021/jacs.6b12328.
  • IWAI-SHIMADA M., KOBAYASHI Y., ISOBE T., NAKAYAMA S.F., SEKIYAMA M., TANIGUCHI Y., ..., SHIMONO M. 2021. Comparison of simultaneous quantitative analysis of methylmercury and inorganic mercury in cord blood using LC-ICP-MS and LC-CVAFS: The pilot study of the Japan environment and children’s study. Toxics. Vol. 9(4) p. 82. DOI 10.3390/toxics9040082.
  • LAWAL O.S., AYANDA O.S., RABIU O.O., ADEBOWALE K.O. 2017. Application of black walnut (Juglans nigra) husk for the removal of lead (II) ion from aqueous solution. Water Science and Technology. Vol. 75(10) p. 2454–2464. DOI 10.2166/wst.2017.125.
  • LI G., WANG S., WU Q., WANG F., DING D., SHEN B. 2017. Mechanism identification of temperature influence on mercury adsorption capacity of different halides modified bio-chars. Chemical Engineering Journal. Vol. 315 p. 251–261. DOI 10.1016/J.CEJ.2017.01.030.
  • LIN G., HU T., WANG S., XIE T., ZHANG L., CHENG S., FU L., XIONG C. 2019. Selective removal behavior and mechanism of trace Hg(II) using modified corn husk leaves. Chemosphere. Vol. 225 p. 65–72. DOI 10.1016/j.chemosphere.2019.03.006.
  • MANIRETHAN V., GUPTA N., BALAKRISHNAN R.M., RAVAL K. 2019. Batch and continuous studies on the removal of heavy metals from aqueous solution using biosynthesised melanin-coated PVDF membranes. Environmental Science and Pollution Research. Vol. 27 p. 24723–24737. DOI 10.1007/s11356-019-06310-8.
  • MARIMÓN-BOLÍVAR W., TEJEDA-BENÍTEZ L., HERRERA A.P. 2018. Removal of mercury (II) from water using magnetic nanoparticles coated with amino organic ligands and yam peel biomass. Environmental Nanotechnology, Monitoring and Management. Vol. 10 p. 486–493. DOI 10.1016/j.enmm.2018.10.001.
  • MinAmbiente 2015. Resolución 0631 de 2015 (17 Mar) Por la cual se establecen los parámetros y los valores límites máximos permisibles en los vertimientos puntuales a cuerpos de aguas superficiales y a los sistemas de alcantarillado público y se dictan otras disposiciones. Bogotá. Ministerio de Ambiente y Desarrollo Sostenible pp. 62. The Resolución is available at: https://www.minambiente.gov.co/documento-normativa/resolucion-631-de-2015/
  • MORA ALVAREZ N.M., PASTRANA J.M., LAGOS Y., LOZADA J.J. 2018. Evaluation of mercury (Hg 2+ ) adsorption capacity using exhausted coffee waste. Sustainable Chemistry and Pharmacy. Vol. 10 p. 60–70. DOI 10.1016/j.scp.2018.09.004.
  • OLIVERO-VERBEL J., CARRANZA-LOPEZ L., CABALLERO-GALLARDO K., RIPOLL-ARBOLEDA A., MUÑOZ-SOSA D. 2016. Human exposure and risk assessment associated with mercury pollution in the Caqueta River, Colombian Amazon. Environmental Science and Pollution Research. Vol. 23(20) p. 20761–20771. DOI 10.1007/s11356-016-7255-3.
  • ORDÓÑEZ JURADO H.R., NAVIA ESTRADA J.F., BALLESTEROS POSSÚ W. 2019. Tipificación de sistemas de producción de café en La Unión Nariño, Colombia [Typification of coffee production systems in La Unión Nariño, Colombia]. Temas Agrarios. Vol. 24(1) p. 53–65. DOI 10.21897/rta.v24i1.1779.
  • PALACIOS-TORRES Y., CABALLERO-GALLARDO K., OLIVERO-VERBEL J. 2018. Mercury pollution by gold mining in a global biodiversity hotspot, the Choco biogeographic region, Colombia. Chemosphere. Vol. 193 p. 421–430. DOI 10.1016/j.chemosphere.2017.10.160.
  • PARK J.H., WANG J.J., ZHOU B., MIKHAEL J.E.R., DE LAUNE R.D. 2019. Removing mercury from aqueous solution using sulfurized biochar and associated mechanisms. Environmental Pollution. Vol. 244 p. 627–635. DOI 10.1016/J.ENVPOL.2018.10.069.
  • QIU H., LV L., PAN B.C., ZHANG Q.J., ZHANG W.M., ZHANG Q.X. 2009. Critical review in adsorption kinetic models. Journal of Zhejiang University: Science A. Vol. 10(5) p. 716–724. DOI 10.1631/jzus.A0820524.
  • RABIE A.M., ABD EL-SALAM H.M., BETIHA M.A., EL-MAGHRABI H.H., AMAN D. 2019. Mercury removal from aqueous solution via functionalized mesoporous silica nanoparticles with the amine compound. Egyptian Journal of Petroleum. Vol. 28(3) p. 289–296. DOI 10.1016/j.ejpe.2019.07.003.
  • ROY A., STEGEMANN J. 2017. Nickel speciation in cement-stabilized/solidified metal treatment filtercakes. Journal of Hazardous Materials. Vol. 321 p. 353–361. DOI 10.1016/j.jhazmat.2016.09.027.
  • SALEH T.A., SARI A., TUZEN M. 2017. Optimization of parameters with experimental design for the adsorption of mercury using polyethylenimine modified-activated carbon. Journal of Environmental Chemical Engineering. Vol. 5(1) p. 1079–1088. DOI 10.1016/j.jece.2017.01.032.
  • SHEN F., LIU J., ZHANG Z., DONG Y., GU C. 2018. Density functional study of hydrogen sulfide adsorption mechanism on activated carbon. Fuel Processing Technology. Vol. 171 p. 258–264. DOI 10.1016/j.fuproc.2017.11.026.
  • SOLISIO C., AL ARNI S., CONVERTI A. 2019. Adsorption of inorganic mercury from aqueous solutions onto dry biomass of Chlorella vulgaris: kinetic and isotherm study. Environmental Technology (United Kingdom). Vol. 40(5) p. 664–672. DOI 10.1080/09593330.2017.1400114.
  • TEJADA C., HERRERA A., RUIZ E. 2016. Kinetic and isotherms of biosorption of Hg(II) using citric acid treated residual materials. Ingenieria y Competividad. Vol. 18(1) p. 117–127.
  • TEJADA-TOVAR C., VILLABONA-ORTÍZ A., GONZÁLEZ-DELGADO Á.D., GRANADOS-CONDE C., JIMÉNEZ-VILLADIEGO M. 2019. Kinetics of mercury and nickel adsorption using chemically pretrated cocoa (Theobroma cacao) husk. Transactions of the ASABE. Vol. 62(2) p. 461–466. DOI 10.13031/trans.13133.
  • VILLABONA-ORTÍZ A., TEJADA-TOVAR C., GONZALEZ-DELGADO A. 2018. Application of cement-based solidification/stabilization technique for immobilizing lead and nickel ions after sorption-desorption cycles using cassava peels biomass. Indian Journal of Science and Technology. Vol. 11 p. 1–6.
  • WAN Q., RAO F., SONG S., MORALES-ESTRELLA R., XIE X., TONG X. 2018. Chemical forms of lead immobilization in alkali-activated binders based on mine tailings. Cement and Concrete Composites. Vol. 92 p. 198–204. DOI 10.1016/J.CEMCONCOMP.2018.06.011.
  • WANG H., SHEN H., SHEN C., LI Y., YING Z., DUAN Y. 2019. Kinetics and mechanism study of mercury adsorption by activated carbon in wet oxy-fuel conditions. Energy and Fuels. Vol. 33(2) p. 1344–1353. DOI 10.1021/acs.energyfuels.8b03610.
  • WANG L., HOU D., CAO Y., OK Y.S., TACK F.M.G., RINKLEBE J., O’CONNOR D. 2020. Remediation of mercury contaminated soil, water, and air: A review of emerging materials and innovative technologies. Environment International. Vol. 134 p. 105281. DOI 10.1016/j.envint.2019.105281.
  • WANG Y.T., CHEN H., WANG D.J., BAI L.J., XU H., WANG W.X. 2016. Preparation of corn stalk-based adsorbents and their specific application in metal ions adsorption. Chemical Papers. Vol. 70(9) p. 1171–1184. DOI 10.1515/chempap-2016-0064.
  • WHO 2003. Mercury in drinking-water background document for development of WHO Guidelines for Drinking-water Quality [online]. New York. World Health Organization pp. 10. Available at: https://www.who.int/docs/default-source/wash-documents/wash-chemicals/mercury-background-document.pdf?sfvrsn=9b117325_4
  • ZHANG C., SUI J., LI J., TANG Y., CAI W. 2012. Efficient removal of heavy metal ions by thiol-functionalized superparamagnetic carbon nanotubes. Chemical Engineering Journal. Vol. 210 p. 45–52. DOI 10.1016/J.CEJ.2012.08.062.
  • ZHAO R., JIA L., YAO Y.X., HUO R.P., QIAO X.L., FAN B.G. 2019. Study of the effect of adsorption temperature on elemental mercury removal performance of iron-based modified biochar. Energy and Fuels. Vol. 33(11) p. 11408–11419. DOI 10.1021/acs.energyfuels.9b02468.
  • ZHOU Q., DUAN Y., CHEN M., LIU M., LU P. 2017. Studies on mercury adsorption species and equilibrium on activated carbon surface. Energy and Fuels. Vol. 31(12) p. 14211–14218. DOI 10.1021/acs.energyfuels.7b02699.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de563d3e-5632-41fb-af9d-ce27706653f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.