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Abstract: This study considers a 3D basic unit-cell proposed for auxetic and non-auxetic foams

namely the elongated hexagonal dodecahedron deforming through changes in angle between its

ligaments (idealised hinging model). This structure was studied in detail for the potential of

exhibiting negative Poisson’s ratio and/or negative compressibility by means of a method based

on standard force-field molecular modelling technique, termed as Empirical Modelling Using

Dummy Atoms (EMUDA). The mechanical properties obtained from this method were then

compared to a previously published analytical model of this structure [Grima J N, Caruana-

Gauci R, Attard D, and Gatt R 2012, Proc. Roy. Soc. A 468 3121], and found to be in good

agreement with each other. The results showed that this system can exhibit zero Poisson’s ratios

in one of its planes and positive or negative Poisson’s ratios in other planes, depending on the

geometry of the model. It was also shown that under certain conditions, negative linear and/or

area compressibility was also exhibited.

Keywords: Auxetic; empirical model; negative Poisson’s ratio; negative compressibility; cellu-

lar structure; foams

1. Introduction

The scope of this paper is to examine in detail the elongated hexagonal

dodecahedron 3D structure which is known to be capable of exhibiting positive

Poisson’s ratio in its non re-entrant form and negative Poisson’s ratio in its re-

entrant form (Figure 1) [1]. One of the methods which can be employed to examine

such a structure is a molecular modelling based technique, where the properties

of the structure are simulated. In order to perform such simulations, one requires
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Figure 1. (a) The hexagonal dodecahedron in its non re-entrant form and (b) the elongated

hexagonal dodecahedron in its re-entrant form, visualisation rendered by Cerius2

a specific molecular modelling software package, such as Cerius2 which is the

molecular modelling package used throughout this paper.

In particular, this paper will make use of the EMUDA technique whenever

simulations are performed. The term EMUDA was coined by Grima in 2000

and stands for Empirical Modelling Using Dummy Atoms. This technique was

first proposed by Grima [2] and was further developed by Chircop Bray and

Grima [3–5] who used it in the analyses and modelling of various auxetic and

non-auxetic structures [6–15]. This modelling technique has been well validated

and shown to be highly robust and suitable for simulating the mechanical and

thermal properties of structures made from ribs which deform through hinging

and/or stretching of the ribs. It was also shown that it can be used as a means of

comparison and checking with proposed analytical models [3–5].

The EMUDA modelling technique involves the construction of structures

made up of dummy atoms, that is, atoms having a nominal mass. In the

EMUDA simulations, non-bonding interactions such as Van der Waal’s forces are

not included. Such non-bonding interactions are usually considered by ‘normal’

molecular modelling methods, and as a result, the EMUDA technique may be

considered as a simplification over such modelling techniques. Another important

simplification employed by the EMUDA technique is that the only terms in the

energy expression defined in this technique are those specified by the force-field

and these are typically the bond lengths between the dummy atoms, the angles

in between such atoms and their torsion angles. However, the user may vary the

terms which are defined according to his/her intent. This simplistic approach

results in the creation of a structure where its ribs consist of ‘springs’ and where

its subtended angles between the bonds consist of ‘hinges’.

By the EMUDA technique, one can render a visualisation of a complex

structure in such detail that any flaw in the geometry is easily observed and

measured. This visualisation of the structure serves as an essential aid for the
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user to fully define and understand a structure, something which may not be

easy if the structure is three dimensional such as the one being modelled here.

In this respect, it should be recalled that one of the biggest advantages brought

about by the introduction of molecular modelling is the easy rendering of three

dimensional molecules, something which up to a few decades ago could only

be done through a laborious process by highly specialised technicians. Also by

means of the EMUDA technique, the user can obtain simulated numerical values

of mechanical properties such as the Young’s modulus of the system, the Poisson’s

ratio and the compressibility which can then be compared to those obtained by

an analytical model or to experimental data, if available.

This paper makes use of the EMUDA technique to construct and simulate

a 3D model of an elongated hexagonal dodecahedron with the scope of obtaining

a better understanding of its three-dimensional geometry and the properties it

may exhibit. In particular, its ability to exhibit negative Poisson’s ratio, and

possibly other anomalous properties will be examined.

2. Construction of the elongated hexagonal dodecahedron

in Cerius2

Simulations were performed on a Cerius2 Version 4.10 (distributed by

Accelyrs Inc.) molecular package using a Silicon Graphics, Inc. (SGI) Octane2.

The hexagonal dodecahedron structure is made up of ribs having different

lengths where the ribs of length l3 are aligned parallel to the Ox3 direction whilst

the ribs of length l1 are placed parallel to the Ox1-Ox3 plane and the ribs of

length l2 are parallel to the Ox2-Ox3 plane.

The simplest non re-entrant hexagonal structure with parameters l1= l2=

l3 = 0.1nm and θ1 = θ2 = 30
◦ was first considered. The position of each vertex

was calculated, and a dummy atom was placed at each vertex by inputting the

calculated co-ordinates (x,y,z) for each atom. The atoms were placed in such

a way that the Ox3 direction of the model is parallel to the z-direction whilst the

Ox2 axis is aligned in the xy-plane of the molecular modelling programme and the

Ox1 is free to take any orientation. However, since the hexagonal dodecahedron

structure has got a cubic unit cell, then by default the Ox1 is parallel to the

x-axis, the Ox2 is parallel to the y-axis whilst the Ox3 is parallel to the z-axis.

The placed atoms were then connected to each other by means of a single bond

using the graphic interface of Cerius2.

Since the parameters l1, l2, l3, θ1 and θ2 are known, the cell parameters of

the unit cell in the Ox1, Ox2 and Ox3 directions were calculated by using the

respective equations:

X1=2l1 cos(θ1) (1)

X2=2l2 cos(θ2) (2)

X3=2[l3+ l1 sin(θ1)+ l2 sin(θ2)] (3)
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Figure 2. 2D projections of the simplest non re-entrant hexagonal dodecahedron being

considered

On obtaining the cell parameters of the unit cell, a boundary condition was

then applied so as to produce a 3D tessellation representing an infinite system.

After the application of the boundary condition, the structure was checked again

and any missing or extra bonds, which typically result from the tessellation

process, were added or removed accordingly. This structure was now complete

and from now onwards is referred to as the parent structure.

3. Setting up of the energy expression

The 3D elongated hexagonal dodecahedron studied in this work will be one

which deforms solely through a mechanism which involves changes in the angles

in between the ribs (idealised hinging model). It is important to note that the

way how this angle is defined by Cerius2 is different from the way θ is defined in

the model proposed by Evans [1]. In fact, in Cerius2 the angle Θ was defined to

be the whole subtended angle from the slanting rib to the vertical rib. This angle

Θ is related to θ by the equation:

θ=Θ−90◦ (4)

The user has virtually total control on the type of deformation mechanism

placed on the structure by defining the various stiffness constants of the system.

In fact, in order for a system to deform solely through hinging, the hinging force

constant is taken to be small whereas the stretching bond constant is taken to

be very large so as to eliminate any deformation through stretching. Another

constraint that needs to be applied on the system is the torsional term. This is

because hinging of the angles can occur out-of-plane resulting in a totally new

geometry. To prevent such out-of-plane deformation, a very large torsional term

is applied in the xy and the yz plane so as to ensure that any hinging of the angles

remains solely in-plane and no shearing occurs.
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Figure 3. A (2×2×2) visualisation of the parent structure

Through the Cerius2 molecular package, there are several methods how

these spring constants could be applied. In this work, the bond stretching and

angle bending terms were taken to be harmonic terms whereas the torsional term

was taken to be a dihedral cosine term. The bond stretching harmonic potential

is given by the equation:

V =
1

2
ks (l− lo)

2
(5)

where ks is the stretching force constant, l is the actual bond length and lo is the

target bond length.

The bond angle bending harmonic potential is given by the equation:

V =
1

2
kh (θ−θo)

2
(6)
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where kh is the hinging force constant, θ is the actual angle bend and θo is the

target bond bend.

The torsional dihedral cosine term is given by the equation:

V =
1

2
kt [1−dcos(nφ)] (7)

where kt is the torsion force constant, φ is the actual angle between planes, d gives

the symmetry present (e.g. cis-, trans-) and n indicates the number of cycles in

360◦ rotation of the dihedral. Note that in this work, d was equal to 1 and n is

equal to 4 in accordance with the symmetry.

The above terms can be inserted in the system either by means of a force-

field or by means of a restraint. In this paper, the force-field method was used. The

advantage in using the force-field method lies in the fact that there would be no

need to modify the parent structure for every simulation run. Instead, one simply

has to generate a force-field which modifies the parent structure when loaded.

For every structure analysed, the potentials, stiffness constants and tar-

get lengths and angles were written in a force-field where the only terms be-

ing considered are the bond stretch, the angle bend and the bond torsion.

All other energy expression terms such as non-bonding terms were consid-

ered to be zero. A typical custom-made force field is presented below for

a structure with the parameters l3 = 1nm, l1 = 0.3nm, l2 = 0.2nm, Θ1 = 120
◦

and Θ2 = 60
◦ whilst ks = 4.18× 10

−5 kJmol−1m (99999.0kcalmol−1 Å), kh =

418.4kJmol−1 rad−1 (100.0kcalmol−1 rad−1) and kt = 4.18× 10
3 kJmol−1 rad−1

(999.0kcalmol−1 rad−1). Note that the values for ks and kt used were the maxi-

mum permitted by the molecular package and are much bigger than kh.

001 VERSION

002 CERIUS2 1

003 END

004 #

005 HEADER

006 END

007 #

008 PREFERENCES

009 BONDS T

010 ANGLES T

011 COULOMB F

012 INVERSIONS F

013 TORSIONS T

014 UREY BRADLEY F

015 HYDROGEN BONDS F

016 DIAGONAL VAN DER WAALS F

017 OFF DIAGONAL VAN DER WAALS F

018 GENERATE UNDEFINED TERMS F

019 IGNORE UNDEFINED TERMS T

020 SHRINK CH BONDS F

021 SINGLE TORSION F

022 SCALE TORSIONS ABOUT COMMON BOND F

023 EXOCYCLIC TORSIONS SCALE FACTOR 1.00000

024 SINGLE INVERSION F
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025 H-BOND METHOD SPLINE

026 H-BOND LIST F

027 NON BOND LIST F

028 DISTANCE DEPENDENT DIELETRIC CONSTANT F

029 COU DIELETRIC CONSTANT 1.00000

030 COU EXCLUDE 1-2 T

031 COU EXCLUDE 1-3 T

032 COU EXCLUDE 1-4 F

033 COU 1-4 SCALE FACTOR 1.00000

034 COU METHOD SPLINE

035 VDW RADII COMBINATION RULE ARITHMETIC

036 VDW EXCLUDE 1-2 T

037 VDW EXCLUDE 1-3 T

038 VDW EXCLUDE 1-4 F

039 VDW 1-4 SCALE FACTOR 1.00000

040 VDW METHOD SPLINE

041 MINIMUM IMAGE F

042 ASSIGN MASS T

043 ASSIGN CHARGE F

044 ASSIGN HYBRIDIZATION F

045 ATOM TYPE F

046 ATOM TYPE ALL F

047 CALCULATE BOND ORDER F

048 END

049 #

050 ATOMTYPES

051 RED C 12.01115

052 CYA C 12.01115

053 WHI C 12.01115

054 GRE C 12.01115

055 YEL C 12.01115

056 BLU C 12.01115

057 END

058 #

060 DIAGONAL VDW

061 END

062 #

063 ATOM TYPING RULES

064 END

065 #

066 #

067 OFF DIAGONAL VDW

068 END

069 #

070 BOND STRETCH

071 CYA BLU HARMONIC 99999.0 10.000

072 YEL WHI HARMONIC 99999.0 10.000

073 BLU RED HARMONIC 99999.0 3.0000

074 GRE YEL HARMONIC 99999.0 3.0000

075 CYA RED HARMONIC 99999.0 3.0000

076 WHI GRE HARMONIC 99999.0 3.0000

077 GRE BLU HARMONIC 99999.0 2.0000

078 YEL RED HARMONIC 99999.0 2.0000

079 WHI RED HARMONIC 99999.0 2.0000

080 CYA GRE HARMONIC 99999.0 2.0000

081 END

082 #
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083 ANGLE BEND

084 RED BLU CYA THETA HARM 100.0000 120.000

085 RED CYA BLU THETA HARM 100.0000 120.000

086 GRE YEL WHI THETA HARM 100.0000 120.000

087 YEL WHI GRE THETA HARM 100.0000 120.000

088 GRE CYA BLU THETA HARM 100.0000 60.0000

089 CYA BLU GRE THETA HARM 100.0000 60.0000

090 RED YEL WHI THETA HARM 100.0000 60.0000

091 YEL WHI RED THETA HARM 100.0000 60.0000

092 END

093 #

094 TORSIONS

095 X BLU CYA X DIHEDRAL 999.0 4.0000 1.0000

096 X YEL WHI X DIHEDRAL 999.0 4.0000 1.0000

097 END

098 #

099 INVERSIONS

100 END

101 #

102 UREY BRADLEY

103 END

104 #

105 HYDROGEN BONDS

106 END

107 #

108 GENERATOR

109 END

Where:

Lines 001–048 define which terms are included in the energy expression.

Lines 051–056 define the dummy atoms being used for the structure with

the syntax;

ATOM TYPE ELEMENT TYPE MASS

where; ATOM TYPE is the label of the different atoms being used. In this case, the

atoms were labelled as colours in order to pinpoint them on the structure during

visualisation. The ELEMENT TYPE was set to be of carbon whereas their MASS was

considered to be that of carbon, however this is redundant since this does not

figure in any calculation.

Lines 071–080 define the bond length between the atoms with the syntax;

XX1 XX2 HARMONIC XX3 XX4

where; XX1 and XX2 refer to the dummy atoms being bonded together, HARMONIC

refers to type of potential used i.e. the one in equation (5), XX3 defines the stiffness

constant of the bond (since this is taken to be a spring) in kcalmol−1 Å. The

stiffness constant was defined to be the maximum possible so as not to have any

stretching in the bond during deformation since the user’s intent was to investigate

the hinging mechanism. The term XX4 defines the target bond length in Å. This

number varies depending whether it denotes l3 which is of length 1nm, l1 which

has a length of 0.3nm or l2 which has a length of 0.2nm.
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Lines 084–091 define the bond angles between the atoms with the syntax;

XX1 XX2 XX3 THETA HARM XX4 XX5

where; XX1, XX2 and XX3 refer to the dummy atoms between which the bond-angle

is subtended, THETA HARM refers to the type of potential being used, in this case

it is the harmonic potential as defined in equation (6), XX4 defines the stiffness

constant of the bond-angle (since this is taken to be a hinge) in kcalmol−1 rad−1.

The stiffness constant was defined to be low when compared to the bond stretching

constant so that the system deforms through the hinging mechanism. The term

XX5 defines the target bond angle in degrees. This number varies since Θ1 was

defined to be 120◦ whereas Θ2 was defined to be 60
◦.

Lines 095–096 define the torsion between the atoms with the syntax;

XX1 XX2 XX3 XX4 DIHEDRAL XX5 XX6 XX7

where; XX1, XX2, XX3 and XX4 refer to the dummy atoms between which the torsion

angles is formed. The term DIHEDRAL refers to the type of potential the torsion

angle is applied as defined by equation (7). In this paper, the torsional terms were

applied around the ribs of length l3 and thus, XX2 and XX3 were given as the pairs

BLU-CYA and YEL-WHI and the values XX1 and XX4 were taken to be X that is, any

atom type in the structure. The term XX5 defines the stiffness of the torsion angle

in kcalmol−1 Å which was taken to be the largest possible so that the system does

not exhibit shear in the xy plane and the atoms remain in their respective planes.

The terms XX6 and XX7 define the terms n and d in the dihedral potential equation

which were given values of 4 and 1 respectively.

4. Energy expression and mechanical properties

calculation

Once the force field was set up correctly, it was then loaded in Cerius2

molecular package. The structure was then minimised according to the parame-

ters given in the force-field. The minimisation procedure will give the best con-

formation and the nearest lowest energy profile of the system with the defined

parameters.

There are several minimisation algorithms which can be employed to reach

the minimum energy profile. Also the user can define the number of iterative steps

and the convergence criteria. The minimisation algorithm used for the simulations

in this paper was the ‘smart minimiser’. This selects the most appropriate

minimising algorithm according to the size of the structure and the distance to the

minimum. At the beginning, the smart minimiser employs the Steepest Descent

algorithm. This algorithm is the simplest of the iterative algorithms and functions

by changing the direction when a minimum is reached. As a result, it is the most

robust of all other algorithms but is much less accurate. Once substantial progress

is reached, and since the structure being modelled has less than 100 atoms, the

‘smart minimiser’ switches to the Adopted Basis Newton-Raphson (ABNR)
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algorithm which is more accurate than the steepest descent algorithm. After

more progress, the ‘smart minimiser’ switches to the Quasi-Newton-Raphson

which method acts as a bridge between previous less accurate algorithms to more

accurate algorithms. Once again, when substantial progress is reached the ‘smart

minimiser’ switches to the Truncated Newton-Raphson since the structure

has less than 100 atoms. This algorithm is highly accurate and is used to achieve

minima with high convergence criteria. However it is computationally and memory

intensive and hence it is used as the last type of minimisation.

For these simulations, first, three runs of a maximum of 5000 steps each

were run for the structure, or until the Cerius2 default standard convergence

criteria were met, whichever occurs first. The Cerius2 default convergence criteria

state a number of conditions which must be satisfied which include a RMS (Root

Mean Square) derivative less than 4.18× 10−12 kJmol−1m (0.01kcalmol−1Å),

a maximum overall energy difference of 4.18×10−3 kJmol−1 (1×10−3 kcalmol−1)

and a maximum RMS stress of 0.1GPa. These minimisations were then followed

by three more minimisations of a maximum of 5000 steps each or until the

Cerius2 high standard criteria were met, whichever occurs first. The high standard

convergence criteria state a number of more rigorous conditions which must

be satisfied which include a RMS derivative less than 4.18× 10−13 kJmol−1m

(0.001kcalmol−1Å), a maximum overall energy difference of 4.18×10−4 kJmol−1

(1×10−4 kcalmol−1) and a maximum RMS stress of 1×10−3GPa.

When the nearest minimum energy profile of the system was achieved,

the mechanical properties of the system were calculated. The molecular package

Cerius2 allows the calculation of mechanical properties through various methods,

however the method employed in this paper is the second derivative method.

This method gives the second derivatives of the lattice energy with respect to

the atomic co-ordinates and the lattice parameters by using a single-point energy

calculation. In fact, if one excludes the internal degrees of freedom, which could

have been used to simulate the equivalent of the IR spectrum, then one may write:

U =Uo+
∑

i

∂U

∂εi
εi+
∑

i,j

∂2U

∂εi∂εj
εiεi+higher order terms (8)

where; ε is the strain and Uo is the equilibrium energy. Note that according to this

expression, if the first derivatives are zero (i.e. the system is at a minimum), then

the second derivatives may be easily evaluated if the value of Uo is known and the

higher order terms are ignored. The second derivative is then used to calculate

the 6×6 components of the stiffness matrix C (and hence the compliance matrix

S=C−1) since:

cij =
∂2U

∂εi∂εj
(9)

The results generated by Cerius2 are given in two 6× 6 matrices where

one of them is the stiffness matrix C whereas the second matrix, the compliance

matrix S, is the inverse of the stiffness matrix. Data was extracted from the
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obtained compliance matrix by expressing the Young’s moduli and the Poisson’s

ratio follows in terms of sij as follows:

E1=
1
s11

E2=
1
s22

E3=
1
s33

ν12=−
s21
s11

ν23=−
s32
s22

ν31=−
s13
s33

ν13=−
s31
s11

ν21=−
s12
s22

ν32=−
s23
s33

(10)

whilst the compressibilities can be calculated by the equations;

β1= s11+s12+s13 β2= s21+s22+s23 β3= s31+s32+s33

β12=β1+β2 β13=β1+β3 β23=β2+β3

β123=β1+β2+β3

(11)

Note that the compressibilities may be obtained in terms of the Young’s

moduli and the Poisson’s ratio.

In addition to these simulations, additional simulations were performed by

applying a uniaxial stress which is equivalent to 10% of the Young’s moduli or

a hydrostatic compressive pressure which is equivalent to 10% of the bulk modulus

so as to visualise the deformations.

5. Results and Discussion

The mechanical properties as simulated by the second derivative method

are summarised in (Tables 1 to 3). Images of the deformed structures following

the application of uniaxial loads and hydrostatic pressure are shown in (Figure 4

to Figure 6) where the pink box and blue box show the original cell parameters

before deformation and after deformation respectively.

The first thing that was noted from the results obtained was that all the

simulations were run to completion and that the systems minimised with the

correct lengths and angles as stipulated in the force-fields. Furthermore, from the

systems minimised at non-zero mechanical loads, there were no changes in the

lengths and torsion angles with all the deformations being at the hinging angles,

as expected. This is very important as it confirms that the force-fields used were

successfully written and loaded and that a nearest minimum energy expression

can be achieved in order to calculate the mechanical properties of the system.

The results also show that in the planes where the re-entrant geometry

is present, a negative Poisson’s ratio was observed upon hinging, whilst in the

planes where the geometry is non re-entrant, a positive Poisson’s ratio is observed

on hinging. These observations can be explained by considering that the structure,

on applying a tensile stress, is deforming through a typical honeycomb manner.

That is, for example, a tensile stress in the x-direction results in a rotation of the

ligament of length l1 as clearly shown in (Figure 4).

Of particular interest is the fact that from the results obtained, it can be

shown that the non re-entrant structure being studied exhibits negative compress-

ibility. This conclusion is not only supported by the numbers obtained (β3 and

β13 for the first structure studied) from the mechanical properties but is also
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supported by the images obtained during deformation. In the deformation images

obtained for the first structure (Figure 4), it is clear that when a compressive

stress is applied, one of the unit cell sides increases in length. The result obtained

is of utmost importance since as previously mentioned, the property of negative

compressibility is very rarely exhibited.

Another interesting result is the fact that zero Poisson’s ratio is exhibited

in the y-direction when loading in the Ox1 direction, and in the x-direction when

loading in the Ox2 direction. This again is featured both from the results obtained

by the mechanical properties and from the deformation images. This occurs since

when one applies a tensile stress in the Ox1 direction, the ribs l2 which are found

in another plane are not affected (and the same applies when applying a tensile

stress in the Ox2 direction, the ribs l1 are not affected).

6. EMUDA simulations as a validation of the published

analytical model

In order to rigorously test the published analytical model of this struc-

ture [16] several hundred force-fields were generated by means of a computer

script loop. This was done since this is a laborious and a repetitive task, i.e. one

which makes it ideal to exploit computer resources rather than input the data

manually, something which is much more error prone. Since each force-field had

different values for every parameter which defines the structure, five script loops

had to be written, each loop for every parameter. The first parameter was l3 and

this was defined to take values of 0.8 and 1nm. When l3 was defined to be 0.8nm,

l1 was taken to be 0.2, 0.3 or 0.4nm (the same applies when l3 = 1nm). With

the second loop defined, a third loop was inserted for the parameter l2 and this

was taken to be either 0.2, 0.3 or 0.4nm when all the previous parameters take

all their possible values. As a result, structures with all three different values of l

were possible. Another script loop was written so as to define the value of θ1 which

was given the values −60◦ to +150◦ in increments of 15◦ (Note that as previously

mentioned, in the force-field the angle Θ is written and this is equal to θ+90◦).

The fifth and last loop was written so as to allow θ2 to take the values of −60
◦ to

+150◦ for every previous θ1. As a result, apart from having a structure with all

three different lengths, the structure could take two different θs simultaneously.

Hence in one plane the structure could have the re-entrant geometry whereas in

the other plane the structure would have the non re-entrant geometry. In total

the amount of structures simulated was of 1458 structures (Number of values of

parameters permitted: l3× l1× l2×θ1×θ2=2×3×3×9×9).

During these simulations, it was assumed that the diameter of the ribs is

negligibly small when compared to the other dimensions. Also the torsion energy

term was applied in such a manner so as not to permit shearing of the structure.

An important restriction which was applied on the structure was that the ribs

cannot overlap each other; this was done so as to achieve a physically realisable

structure. Due to this last restraint, some combinations of lengths and angles
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were not permitted. In fact, it may be shown that the following conditions must

be satisfied to permit realisable structures:

l3> 2l1 sin(θ1) (12)

l3=2l2 sin(θ2) (13)

l3=2l1 sin(θ1)+2l2 sin(θ2) (14)

Note that for the structure to be physically realisable, all the above conditions

need to be fulfilled simultaneously, if one of the above conditions is not obeyed,

then the structure is not physically realisable.

Once the data was generated, another computer script was written so as to

extract the stiffness matrix from the respective second derivative result files and

write them in just one file which was then used as a comparison for the results

obtained by the previoulsy published analytical model [16]. Direct comparison

of the EMUDA results with the analytical model is not possible before some

conversions are taken into consideration. This is because the Cerius2 molecular

package uses some non SI units by default (as is normally the case in molecular

modelling simulations) whereas the units in the analytical model were SI units.

Table 4 summarises the conversion factors that need to be taken.

Table 4. Conversion factors that need to be applied to compare the EMUDA results with

the analytical model

Parameter in Parameter in Conversion Calculated as
analytical equation the EMUDA model factor

h [m] h [Å] ×10−10 Å → m: 10−10

l [m] l [Å] ×10−10 Å → m: 10−10

Kh [J rad
−2] Kh [kcalmol

−1 rad−2] ×4184NA kcal → J: 4.184×103

moles → units: NA

Ks [Jm
−2] Ks [kcalmol

−1 Å−2] ×4184NA×10
20 kcal → J: 4.184×103

moles → units: NA
Å−2 → m−2: (10−10)−2

Plots which compare the results obtained by the EMUDA simulations with

those predicted by the analytical model of [16] are shown in Figure 7 and Figure 8.

These results clearly show that, in general, there is excellent agreement

between the results of the detailed simulations and the predictions made by the

analytical model [16]. This is very important since it gives added confidence to

the quality of the results obtained by the two independent methodologies.

7. Conclusion

This paper has presented a modelling methodology and the results obtained

for simulating the elongated hexagonal dodecahedron structure. It has been

shown that:

• The simulations carried out by the EMUDA technique are working correctly and

the mechanical properties of the system can be obtained from the simulation.
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Figure 7. Plots comparing the results for the Young’s moduli and the Poisson’s ratios

obtained from the analytical model [16] and the EMUDA simulations for a system with

l3=0.8nm, l1=0.2nm and l2=0.2nm

• The elongated hexagonal dodecahedron structure exhibits negative or positive

Poisson’s ratio depending on the type of geometry present resulting in a poten-

tial system which has zero/positive/negative Poisson’s ratios in three different

planes.

• The studied structure can exhibit the rare property of negative compressibility.

• The results obtained from the EMUDA simulations are in agreement with the

analytical model [16].
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Figure 8. Plots comparing the results for linear, area and volume compressibility obtained

from the analytical model [16] and the EMUDA simulations for a system with l3=0.8nm,

l1=0.2nm and l2=0.2nm
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