PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Variation in Root Development Response of Napier Grass to Drought Stress

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Global climate change and increasing agricultural activity are the main causes of biotic and abiotic stresses, which negatively affect the plant growth and crop yields. The plant root system is the first organ for sensing the soil moisture limitation; therefore root growth under elevated water deficit is an important indicator for plant’s drought tolerance. Although the previous studies focused on the morphological traits of Napier grasses under water stresses, the root growth changes due to drought levels remain largely unclear. In order to evaluate variation in root performance to respond to drought stress, four cultivars named "Cỏ voi thuần" (CVT), King grass, Packchong, and VA06 were grown for 10 days under drought conditions under polyethylene glycol 6000 (PEG6000): 0% PEG6000 as control, 5% PEG6000, 10% PEG6000, 15% PEG6000 and 20% PEG6000. As compared to control, the root growth of all cultivars was reduced under drought treatments; however, significant variation in the root development response to drought levels was found. Among Napier cultivars, "Cỏ voi thuần" expressed drought-tolerant genotypes. The information on the root length, diameter, surface area and volume of the cultivars reveals interesting guidelines for further studies to explore the mechanisms behind root adaptation of Napier grasses to drought.
Słowa kluczowe
Rocznik
Strony
64--74
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Department of Food Crop Sciences, Faculty of Agronomy, Vietnam National University of Agriculture, Gia Lam, Ha Noi, Vietnam
  • Department of Food Crop Sciences, Faculty of Agronomy, Vietnam National University of Agriculture, Gia Lam, Ha Noi, Vietnam
  • Department of Food Crop Sciences, Faculty of Agronomy, Vietnam National University of Agriculture, Gia Lam, Ha Noi, Vietnam
  • Department of Food Crop Sciences, Faculty of Agronomy, Vietnam National University of Agriculture, Gia Lam, Ha Noi, Vietnam
  • College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, P.O BoX 210, Musanze, Rwanda
  • Department of Food Crop Sciences, Faculty of Agronomy, Vietnam National University of Agriculture, Gia Lam, Ha Noi, Vietnam
  • Department of Food Crop Sciences, Faculty of Agronomy, Vietnam National University of Agriculture, Gia Lam, Ha Noi, Vietnam
Bibliografia
  • 1. Budiman, Sutrisno R.D., Budhi S.P.S., Indrianto A. 2012. Morphological characteristics, productivity and quality of three napier grass (Pennisetum purpureum Schum) cultivars harvested at different age, Journal of the Indonesian Tropical Animal Agriculture, 37, 294–301.
  • 2. Cardoso J.A., Pineda M., Jiménez, de la C.L., Vergara, M.F., Rao I.M. 2015. Contrasting strategies to cope with drought conditions by two tropical forage C4 grasses. AoB Plants, 7(107). DOI: doi. org/10.1093/aobpla/plv107
  • 3. Comas L.H., Becker S.R., Cruz V.M., Byrne P.F., Dierig D.A. 2013. Root traits contributing to plant productivity under drought. Frontier in Plant Science, 4(442). DOI: 10.3389/fpls.2013.00442
  • 4. Daryanto S., Wang L., Jacinthe P.A. 2016. Global synthesis of drought effects on maize and wheat production. PLos ONE, 11, e0156362. DOI: 10.1371/journal.pone.0156362
  • 5. Fang Y., Liang L., Liu S., Xu B., Siddique K.H.M., Palta J.A., Chen Y. 2021. Wheat cultivars with small root length density in the topsoil increased postanthesis water use and grain yield in the semi-arid region on the Loess Plateau. European Journal of Agronomy, 124. DOI: 10.1016/j.eja.2021.126243
  • 6. Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S.M.A. 2009. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, Springer Verlag/EDP Sciences/INRA, 2009, 29(1), 185–212. hal-00886451
  • 7. Figueroa-Bustos V., Palta J.A., Chen Y., Stefanova K., Siddique K.H.M. 2020. Wheat cultivars with contrasting root system size responded differently to terminal Drought. Frontier in Plant Science, 11, 1285. DOI: 10.3389/fpls.2020.01285
  • 8. Francini A., Sebastian L. 2019. Abiotic stress effects on performance of horticultural crops. Horticulturae, 5, 67. DOI: 10.3390/horticulturae5040067
  • 9. Francini A., Sebastiani L. 2019. Abiotic stress effects on performance of horticultural crops. Horticulturae 5, 67.
  • 10. Habte E., Muktar M.S., Teressa A., Lee K.W, Jones C.S. 2019. Identification of water use efficient Napier grass accessions using field drought stress. Post prepared for the International Conferences on Plant Breeding for Sustainable Development, Korea, 2–5 July 2019. Nairobi, Kenya: ILRI
  • 11. Jabereldar A.A., El Naim A.M., Abdalla A.A., Yasin M., Dagash Y.M. 2017. Effect of water stress on yield and water use efficiency of sorghum (Sorghum bicolor L. Moench) in semi-arid environment. International Journal of Agriculture and Forestry, 7, 1–6. DOI: 10.5923/j.ijaf.20170701.01.
  • 12. Kabirizi J. Muyekho F., Mulaa M., Msangi R., Pallangyo B., Kawube G., Zziwa E., Mugerwa, S., Ajanga S., Lukwago G., Wamalwa N.I.E., Kariuki I., Mwesigwa R., Nannyeenya-Ntege, W., Atuhairwe A., Awalla J., Namazzi C., Nampijja Z. 2015. Napier grass feed resource: production, constraints and implications for smallholder farmers in Eastern and Central Africa. The Eastern African Agricultural Productivity Project, Naivasha, Kenya, 2015.
  • 13. Kawube G., Alicai T., Wanjala B., Njahira M., Awalla J., Skilton R. 2015. Genetic diversity in Napier grass (Pennisetum purpureum) assessed by SSR markers. Journal of Agricultural Science, 7, 147.
  • 14. Khan A., Pan X., Najeeb U., Tan D.K.Y., Fahad S., Zahoor R., Luo H. 2018. Coping with drought: stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biological Research, 51, 47. DOI: 10.1186/s40659-018-0198-z
  • 15. Kim Y., Chung Y.S., Lee E., Tripathi P., Heo S., Kim K.H. 2020. Root Response to Drought Stress in Rice (Oryza sativa L.). International Journal of Molecular Sciences, 21, 1513. DOI: 10.3390/ijms21041513.
  • 16. Kim W., Iizumi T., Nishimori M. 2019. Global patterns of crop production losses associated with droughts from 1983 to 2009. Journal of Applied Meteorology and Climatology, 58, 1233–1244.
  • 17. Küchenmeister K., Küchenmeister F., Kayser M., Wrage-Mönnig N., Isselstein J. 2013. Influence of drought stress on nutritive value of perennial forage legumes. International Journal of Plant Production, 7, 693–710. https://www.sid.ir/en/journal/ViewPaper.aspx?id=339865
  • 18. Lopes M.S., Araus J.L., van Heerden P.D., Foyer C.H. 2011. Enhancing drought tolerance in C4 crops. Journal of experimental botany, 62, 3135–3153. DOI: 10.1093/jxb/err105
  • 19. Lowe A.J., Thorpe W., Teake A., Hanson J. 2003. Characterization of germplasm accession of napiergrass (Pennisetum purpureum and P. purpureum × P. glaucum hybrids) and comparison with farm clones using RAPD. Genetic Resources and Crop Evolution, 50, 121–132.
  • 20. Lynch J.P., Chimungu J.G., Brown K.M. 2014. Root anatomical phenes associated with water acquisition from drying soil: targets for crop improvement. Journal of Experimental Botany, 65, 6155–6166. DOI: 10.1093/jxb/eru162
  • 21. Meher, Shivakrishna P., Ashok K.R., ManoharRao D. 20017. Effect of PEG-6000 imposed drought stress on RNA content, relative water content (RWC), and chlorophyll content in peanut leaves and roots. Saudi Journal of Biological Sciences, 25(2), 285–289.
  • 22. Mwendia S., Yunusa I., Sindel B., Whalley D., Kariuki I. 2016. Assessment of Napier grass accessions in lowland and highland tropical environments in East Africa: productivity and forage quality. Experimental Agriculture, 53, 27–43.
  • 23. Negawo A., Teshome A., Kumar A., Hanson J., Jones C. 2017. Opportunities for Napier Grass (Pennisetum purpureum) Improvement using molecular genetics. Agronomy, 7, 28. DOI: 10.3390/agronomy7020028.
  • 24. Nguyen L.V, Bertero D., Long N.V. (2020). Genetic variation in root development responses to salt stresses of quinoa, Journal of Agronomy and Crop Science 206(2020) 538–547.
  • 25. Nguyen N.T.A., Pham C.V., Nguyen D.T.N., Mochizuki, T. 2015. Genotypic variation in morphological and physiological characteristics of rice (Oryza sativa L.) under aerobic conditions. Plant Production Science, 18, 501–513. DOI: 10.1626/pps.18.501
  • 26. Nguyen V.L., Takahashi R., Githiri S.M., Rodriguez T.O., Tsutsumi N., Kajihara S., Sayama T., Ishimoto M., Harada K., Suematsu K., Abiko T., Mochizuki T. 2017. Mapping quantitative trait loci for root development under hypoxia conditions in soybean (Glycine max L. Merr.), Theoretical and Applied Genetics, 130, 743–755.
  • 27. Nyambati E.M., Muyekho F.N., Onginjo E., Lusweti C.M. 2010. Production, characterization and nutritional quality of Napier grass [Pennisetum purpureum (Schum.)]. African Journal of Plant Science, 4(12), 496–502.
  • 28. Palta J.A., Chen X., Milroy S.P., Rebetzke G.J., Dreccer M.F., Watt M. 2011. Large root systems: are they useful in adapting wheat to dry environments? Functional Plant Biology, 38, 347–354. DOI: 10.1071/FP11031
  • 29. Purbajanti, E.D., Anwar, S., Wydiati, Kusmiyati, F. (2012). Drought stress effect on morphology characters water use efficiency, growth and yield of guinea and napier grasses. International Research Journal of Plant Science, 3, 47–53.
  • 30. Raza A., Razzaq A., Mehmood S.S., Zou X., Zhang X., Lv Y., Xu J. 2019. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants (Basel, Switzerland), 8(2), 34. DOI: 10.3390/plants8020034
  • 31. Santos R., Carvalho M., Rosa E., Carnide V., Castro I. 2020. Root and agro-morphological traits performance in cowpea under drought stress. Agronomy, 10, 1604. DOI: 10.3390/agronomy10101604
  • 32. Seleiman M.F., Al-Suhaibani N., Ali N., Akmal M., Alotaibi M., Refay Y., Dindaroglu T., Abdul-Wajid H.H., Battaglia M.L. 2011. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259. DOI: 10.3390/plants10020259
  • 33. Singh B.P., Singh H.P., Obeng E. 2013. Elephant grass. In: B.P. Singh, editor, Biofuel crops: Production, physiology and genetics. CAB Int., Fort Valley, GA. p. 271–291. DOI: 10.1079/9781845938857.0271
  • 34. Wang C., Linderholm H., Song Y., Wang F., Liu Y., Tian J., Xu J., Song Y., Ren G. 2020. Impacts of drought on maize and soybean production in Northeast China during the past five decades. International Journal of Environmental Research and Public Health, 17, 2459. DOI: 10.3390/ijerph17072459
  • 35. Wasaya A., Zhang X., Fang Q., Yan Z. 2018. Root phenotyping for drought tolerance: A Review. Agronomy, 8, 241. DOI: 10.3390/agronomy8110241
  • 36. Yadav S., Modi P., Dave A., Vijapura A., Patel D., Patel M. 2020. Effect of abiotic stress on crops. In Sustainable Crop Production; Hasanuzzaman, M., Filho, M., Fujita, M., Nogueira, T., Eds, Intech Open, Rijeka, Croatia.
  • 37. Zhang J., Zhang S., Cheng M., Jiang H., Zhang X., Peng C., Lu X., Zhang M., Jin J. 2018. Effect of drought on agronomic traits of rice and wheat: A Meta-Analysis. International Journal of Environmental Research and Public Health, 15, 839. DOI: 10.3390/ijerph15050839
  • 38. Zhang R., Schellenberg M.P., Han G., Wang H., Li J. 2018. Drought weakens the positive effects of defoliation on native rhizomatous grasses but enhances the drought-tolerance traits of native caespitose grasses. Ecology and Evolution, 8, 12126–12139. DOI: 10.1002/ece3.4671.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de52ff60-9ec8-4589-9dba-ee347be4907f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.