PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental bearing capacity of eccentrically loaded foundation near a slope

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on the response of small-scale model square footing, the present paper shows the results of an experimental bearing capacity of eccentrically loaded square footing, near a slope sand bed. To reach this aim, a steel model square footing of (150 mm × 150 mm) and a varied sand relative density of 30%, 50% and 70% are used. The bearing capacity-settlement relationship of footing located at the edge of a slope and the effect of various parameters such as eccentricity (e) and dimensions report (b/B) were studied. Test results indicate that ultimate bearing capacity decreases with increasing load eccentricity to the core boundary of footing and that as far as the footing is distant from the crest, the bearing capacity increases. Furthermore, the results also prove that there is a clear proportional relation between relative densities –bearing capacity. The model test provides qualitative information on parameters influencing the bearing capacity of square footing. These tests can be used to check the bearing capacity estimated by the conventional methods.
Wydawca
Rocznik
Strony
33--41
Opis fizyczny
Bibliogr. 32 poz., tab., rys.
Twórcy
  • Research Laboratory in Hydraulic Applied LARHA, Department of Civil Engineering, University of Batna 2, Algeria
  • Research Laboratory in Hydraulic Applied LARHA, Department of Civil Engineering, University of Batna 2, Algeria
Bibliografia
  • [1] Algin, H. M. & Halil, M. (2009). Elastic settlement under eccentrically loaded rectangular surface footings on sand deposits. Journal of Geotechnical and Geoenvironmental Engineering .135.10, pp. 1499–1508.
  • [2] Azzouz, A. S. & Baligh, M. M. (1983). Loaded areas on cohesive slopes. J. Geotech. Eng. 10.1061/ (ASCE) 0733- 9410(1983)109:5(724), pp. 724–729.
  • [3] Badakhshan, E. & Noorzad, A. (2015). Load eccentricity effects on behaviour of circular footings reinforced with geogrid sheets. Journal of Rock Mechanics and Geotechnical Engineering, 7(6), 691–699. https://doi.org/10.1016/j. jrmge.2015.08.006.
  • [4] Badakhshan, E. & Noorzad, A. (2017). Effect of footing shape and load eccentricity on behaviour of geosynthetic reinforced sand bed. Geotextiles and Geomembranes volume 45, issue 2, pp. 58–67.
  • [5] Bowles, J. E. (1988). Foundation analysis and design. Mc Graw-Hill, New York. 4th ed.
  • [6] Bushra, S. A. & Rusul, S. H. (2013). Bearing capacity of eccentrically loaded square foundation on compacted reinforced dune sand over gypseous soil. Paper presented at journal of earth sciences and geotechnical engineering, vol 3, no. 4, pp. 47–62.
  • [7] Cure, E., Turker, E., & Uzuner, B. A. (2014). Analytical and experimental study for ultimate loads of eccentrically loaded model strip footings near a sand slope. Ocean Engineering, 89, 113–118. https://doi.org/10.1016/j.oceaneng.2014.07.018.
  • [8] Georgiadis, K. (2010). Undrained bearing capacity of strip footings on slopes. J. Geotech. Eng. 10.1061 / (ASCE) GT.1943- 5606.0000269 ,pp. 677–685.
  • [9] Ghosh, P. & Kumar, J. (2005). Seismic bearing capacity of strip footings adjacent to slopes using the upper bound limit analysis. Electron.J.Geotech.Eng.10, bundle.
  • [10] Graham, J., Andrews, M. & Shields, D. H. (1988). Stress characteristics for shallow footings in cohesionless slopes. Can. Geotech. J. 25(2), pp. 238–249.
  • [11] Griffiths, D. V. (1982). Computation of bearing capacity factors using finite elements. Geotechnique, 32(3), pp. 105–202.
  • [12] Highter, W.H. & ANDERS, J.C. (1985). Dimensioning footings subjected to eccentric loads. ASCE Journal of Geotechnical Engineering, 111, No. 5 pp. 659–665.
  • [13] Khitas, N. E. H., Benmeddour, D., Mellas, M. & Mabrouki, A. (2017). The undrained bearing capacity of strip footings under eccentric loading: effect of soil-footing interface tensile strength. International Journal of Geotechnical Engineering, 1–7. https://doi.org/10.1080/19386362.2017.1416570.
  • [14] Krabbenhoft, S., Damkilde, L. & Krabbenhoft, K. (2014). Bearing capacity of strip footings in cohesionless soil subject to eccentric and inclined loads. International Journal of Geomechanics, 14(3), 04014003. https://doi.org/10.1061/ (asce)gm.1943-5622.0000332.
  • [15] Kusakabe, O., Kimura, T. & Yamaguchi, H. (1981). Bearing capacity of slopes under strip loads on the top surfaces. Soils Found. 21(4), pp. 29–40.
  • [16] Mabrouki, A. & al. (2016). 2D numerical analysis of shallow foundation rested near slope under inclined loading. Procedia Engineering volume 143, pp. 623–634.
  • [17] Mahiyar, H. & Patel, A. N. (2000). Analysis of angle shaped footing under eccentric loading. J .Geotech. Geoenviron. Eng. 10.1061/ (ASCE) 1090-0241(2000)126:12(1151), pp. 1151–1156.
  • [18] Meyerhof, G.G. (1953). The bearing capacity of foundations under eccentric and inclined loads. In proc. of the 3rd Int. Conf, on SMFE .vol 1. pp. 440–445.
  • [19] Meyerhof, G. G. (1957). The ultimate bearing capacity of foundations on slopes. ,” Proceedings of the 4th Int. conf. S.M.F.E., vol. 3, pp. 384–386.
  • [20] Meyerhof, G. G. (1963). Some recent research on the bearing capacity of foundations. Canadian Geotechnical Journal, vol. I, No. 1, pp. 16–26.
  • [21] Ouahab, M. Y., Mabrouki, A., Mellas, M., & Benmeddour, D. (2018). Effect of load eccentricity on the bearing capacity of strip footings on non-homogenous clay overlying bedrock. Transportation Infrastructure Geotechnology, 5(2), 169–186. https://doi.org/10.1007/s40515-018-0055-0.
  • [22] Peynircioglu, H. (1948). Tests on bearing capacity of shallow` foundations horizontal top surfaces of sand fills and the behaviour of soils under such foundations. Proc., 2nd Int. Conf. On soil mechanics and foundation engineering, Rotterdam, Netherlands, pp. 144–205.
  • [23] Prakash, S. & Saran, S. (1971). Bearing capacity of eccentrically loaded footings. Journal of SM & FE division, ASCE 97, pp. 901–921.
  • [24] Prandtl, G. (1921). Eindringen steifigkeit und festigkeit von schneiden, Angew. Math. U. Mech.1, 15.
  • [25] Purkayastha, R. D. & Char, R. A. (1977). Stability analysis for eccentrically loaded footings. J. Geotech. Eng. 103(6), pp. 647–651.
  • [26] Ramlot, C. & Vandeperre, L. (1950). Electric pylons of foundations: Their resistance to overturning their stability, their calculation. Research rep. 2, IRSIA, France.
  • [27] Shields, D., Neil, C. & Jacques, G. (1990). Bearing capacity of foundations in slopes. J. Geotech. Eng. 10.1061/ (ASCE) 0733-9410(1990)116:3(528), pp. 528–537.
  • [28] Shukla, R. P. & Jakka, R. S. (2017). Critical setback distance for a footing resting on slopes. Acta Geotechnica Slovenica.
  • [29] Terzaghi, K. (1943). Theoretical soil mechanics. Wiley and sons Inc New York, 5th ed.
  • [30] Ueno, K., Miura, K. & Maeda, Y. (1998). Prediction of ultimate bearing capacity of surface footing with regard to size effects. Soils found .38(3), pp. 165–178.
  • [31] Vesic, A.S. (1973b). Analysis of ultimate loads of shallow foundations. J. Soil mech. Found.Div, ASCE 99, No. SM1, 45–73.
  • [32] Zhu, F. (1998). Centrifuge modelling and numerical analysis of bearing capacity of ring foundations on sand. Facdty of engineering and applied science Mernorial university of new foundland.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de51e2ba-b7e5-4de0-9f6c-9dcc8746896b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.