PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A new correlation for predicting the hydrothermal characteristics over flat tube banks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The flat tubes are necessary apparatus to design the modern heat exchangers. In this context, a CFD (computational fluid dynamics) study has been achieved to explore the influence of the flat tube size on the heat transfer characteristics in cross-flow over flat tube banks. The calculations are performed with the help of the computer software (Fluent) which is based on the finite volume method to solve the continuity, momentum and energy equations. The numerical investigations are achieved for laminar flow (Reynolds numbers changing from 50 to 800), two dimensional flows and incompressible fluids. Some predicted results are compared with available experimental data of the literature and a satisfactory agreement is observed. The obtained results show a decrease in the heat transfer coefficient with increased size of the flat tube. A new valuable empirical correlation is suggested for the prediction of heat transfer coefficients over a flat tube bank. The proposed correlation may be useful for engineers to predict the heat transfer rates in such devices without requirements of experimental measurements.
Rocznik
Strony
273--280
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Technical Sciences, University Amar Thilidji of Laghouat, Algeria
autor
  • Department of Technology, University Centre of Naama–Ahmed Salhi, Po. Box 66, Naama 45000, Algeria
  • Faculty of Mechanical Engineering, USTO-MB, Oran, Algeria
Bibliografia
  • 1. Alem K., Sahel D., Nemdili A., Ameur H. (2018). CFD investigations of thermal and dynamic behaviors in a tubular heat exchanger with butterfly baffles. Frontiers in Heat and Mass Transfer (FHMT), Vol. 10, pp. 27.
  • 2. Zukauskas A. (1972). Heat transfer from tubes in cross flow. J. Adv Heat Transfer, Vol. 8, pp. 93–160.
  • 3. Mellal M., Benzeguir R., Sahel D., Ameur H. (2017). Hydro-thermal shell-side performance evaluation of a shell and tube heat exchanger under different baffle arrangement and orientation. International Journal of Thermal Sciences, Vol. 121, pp. 138-149.
  • 4. Madhani V.K., Chhabra R.P., Eswaran V. (2002). Forced convection heat transfer in tube banks in cross flow. Chem. Eng. Sci., Vol. 54, pp. 379–391.
  • 5. El-Shaboury E.M.F., Ormiston S.J. (2005). Analysis of laminar forced convection of air for cross flow in in-line tube banks with non-square arrangements. Num. Heat Transfer, Vol. 48, pp. 99–126.
  • 6. Wu J.M., Tao W.Q. (2008). Numerical study on laminar convection heat transfer in a channel with longitudinal vortex generator, Part B: parametric study of major influence factors. Int. J. Heat Mass Transfer, Vol. 51, pp. 3683–3692.
  • 7. Fiebig M., Chen Y., Grossegorgemann A., Mitra N.K. (1995). Conjugate heat transfer of a finned tube. Part B: heat transfer augmentation and avoidance of heat transfer reversal by longitudinal vortex generators. Num. Heat Transfer, Vol. 28, pp. 147–155.
  • 8. Fan J.F., Ding W.K., Zhang J.F., He Y.L., Tao W.Q. (2009). A performance evaluation plot of enhanced heat transfer techniques oriented for energy-saving. Int. J. Heat Mass Transfer, Vol. 52, pp. 33–44.
  • 9. Fullerton T. L., Anand N.K. (2010). Periodically fully developed flow and heat transfer over flat and oval tubes using a control volume finite-element method. Num. Heat Transfer, Vol. 57, pp. 642–665.
  • 10. Wang W., Bao Y., Wang Y. (2015). Numerical investigation of a finned-tube heat exchanger with novel longitudinal vortex generators. Appl. Therm. Eng., Vol. 86, pp. 27–34.
  • 11. Wu J.M., Tao W.Q. (2012). Effect of longitudinal vortex generator on heat transfer in rectangular channels. Appl. Therm. Eng., Vol. 37, pp. 67–72.
  • 12. Ameur H., Menni Y. (2019). Laminar cooling of shear thinning fluids in horizontal and baffled tubes: Effect of perforation in baffles. Thermal Science and Engineering Progress, Vol. 14, 100430.
  • 13. Boukhadia K., Ameur H., Sahel D., Bozit M. (2018). Effect of the perforation design on the fluid flow and heat transfer characteristics of a plate fin heat exchanger. International Journal of Thermal Sciences, Vol. 126, pp. 172-180.
  • 14. Guo Z.Y., Li D.Y., Wang B.X. (1998). A novel concept for convective heat transfer enhancement. Int. J. Heat Mass Transfer, Vol. 41, pp. 2221–2225.
  • 15. Ameur H., Sahel D. (2019). Effect of some parameters on the thermo-hydraulic characteristics of a channel heat exchanger with corrugated walls. Journal of Mechanical and Energy Engineering, Vol. 3(43), pp. 53-60.
  • 16. Sahel D., Ameur H., Benzeguir R., Kamla Y. (2018). Prediction of the heat transfer development in a smooth tube. Journal of Engineering Physics and Thermophysics, Vol. 91, pp. 682-687.
  • 17. Ameur H. (2019). Effect of the baffle inclination on the flow and thermal fields in channel heat exchangers. Results in Engineering, Vol. 3, 100021.
  • 18. Anoop B., Balaji C., Velusamy K. (2015). A characteristic correlation for heat transfer over serrated finned tubes. Ann. Nuclear Energy, Vol. 85, pp. 1052–1065.
  • 19. Ameur H. (2020). Effect of corrugated baffles on the flow and thermal fields in a channel heat exchanger. Journal of Applied and Computational Mechanics, Vol. 6, pp. 209-218.
  • 20. Beale S.B., Spalding D.B. (1999). A numerical study of unsteady fluid flow in in-line and staggered tube banks. J. Fluids Structure, Vol. 13, pp. 723–754.
  • 21. Tahseen T.A., Ishak M., Rahman M.M. (2015). An overview on thermal and fluid flow characteristics in a plain plate finned and un-finned tube banks heat exchanger. Renew. Sustain. Energy Reviews, Vol. 43, pp. 363–380.
  • 22. Benarji N., Balaji C., Venkateshan S.P. (2008). Unsteady fluid flow and heat transfer over a bank of flat tubes. Heat Mass Transfer, Vol. 44, pp. 445–461.
  • 23. Gholami A.A., Wahid A., Mohammed H.A. (2014). Heat transfer enhancement and pressure drop for fin-and-tube compact heat exchangers with wavy rectangular winglet-type vortex generators. Int. Comm. Heat Mass Transfer, Vol. 54, pp. 132–140.
  • 24. Ishak M., Tahseen T.A., Rahman M.M. (2013). Experimental investigation on heat transfer and pressure drop characteristics of air flow over a staggered flat tube bank in cross flow. Int. J. Auto. Mech. Eng., Vol. 7, pp. 900–911.
  • 25. Tahseen T.A., Rahman M.M., Ishak M. (2014). An experimental study air flow and heat transfer over in-line flat tube bank. Int. J. Auto. Mech. Eng., Vol. 9, pp. 1487–500.
  • 26. Tahseen T.A., Ishak M., Rahman M.M. (2014). An experimental study of heat transfer and friction factor characteristics of finned flat tube banks with in-line tubes configurations. Appl. Mech. Mat., Vol. 564, pp. 197–203.
  • 27. Kim T. (2013). Effect of longitudinal pitch on convective heat transfer in cross-flow over in-line tube banks. Ann. Nuclear Energy, Vol. 57, pp. 209–215.
  • 28. Sahel D., Benzeguir R., Baki T. (2015). Heat transfer enhancement in a fin and tube heat exchanger with isosceles vortex generators. Mechanika, Vol. 21, pp. 457–464.
  • 29. Sahel D., Ameur H., Kamla Y. (2017). A numerical study of fluid flow and heat transfer over a fin and flat tube heat exchangers with complex vortex generators. Eur. Phys. J. Appl. Physics, Vol. 78, 34805.
  • 30. Haitham M.S., Bahaidarah N.K.A. (2005). A numerical study of fluid flow and heat transfer over a bank of flat tubes. Num. Heat Transfer, Vol. 48, pp. 359–385.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de4dc8f3-5d87-4b80-9fb2-112aea5ba559
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.