PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of the interface on the fatigue life of steel-based explosively welded heterostructured plates

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Melted zones, microcracks, shear bands, and elastic incompatibility of explosively welded materials are features that may initialize cracks at the interface and reduce fatigue strength. This study aims to determine the effect of interfacial defect-like structures on the fatigue strength of explosively welded corrosion-resistant plates. Cyclic axial loading was applied to seven distinct layer-by-layer compositions of Ti Gr 1, Zr 700 alloys, and carbon steels. The interfacial wave height as a metric of potential fatigue life influencing factors along with measured strain amplitude was applied as the input quantities for the Machine Learning based model, i.e. the Gaussian process for regression (GPR). This is a novel and successful application of GPR to estimate the effect of interfacial wave height on the fatigue life of explosively welded plates. For the first time, the effect of the interface feature on fatigue life was estimated quantitatively. The Digital Image Correlation technique was applied to measure the field of cyclic strain for the purpose of verifying if a single strain amplitude is representative of a heterostructured plate. It was found that interfacial wave height is an important feature and its increase by 100 µm reduces the fatigue life of analysed plates by 36%. Additionally, to validate the applicability of explosively welded plates to engineering structures under cyclic loading, the experimental fatigue lives were compared with the design curve of the American Society of Mechanical Engineers (ASME) code.
Rocznik
Strony
art. no. e191, 2023
Opis fizyczny
Bibliogr. 58 poz., rys., wykr.
Twórcy
autor
  • Opole University of Technology, ul. Mikołajczyka 5, 45-271 Opole, Poland
  • Opole University of Technology, ul. Mikołajczyka 5, 45-271 Opole, Poland
  • Opole University of Technology, ul. Mikołajczyka 5, 45-271 Opole, Poland
  • Opole University of Technology, ul. Mikołajczyka 5, 45-271 Opole, Poland
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. W. Reymonta 25, 30-059 Kraków, Poland
  • Opole University of Technology, ul. Mikołajczyka 5, 45-271 Opole, Poland
  • Opole University of Technology, ul. Mikołajczyka 5, 45-271 Opole, Poland
  • Department of Mechanical Engineering, Graphic Era (Deemed to Be University), Dehradun, India
Bibliografia
  • 1. Barthelat F, Yin Z, Buehler MJ. Structure and mechanics of inter- faces in biological materials. Nat Rev Mater. 2016;1:1–16. https:// doi.org/10.1038/natrevmats.2016.7.
  • 2. Liu Z, Meyers MA, Zhang Z, Ritchie RO. Functional gradi- ents and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Prog Mater Sci. 2017;88:467–98. https://doi.org/10.1016/j.pmatsci.2017.04.013.
  • 3. Zhu Y, Ameyama K, Anderson PM, Beyerlein IJ, Gao H, Kim HS, Lavernia E, Mathaudhu S, Mughrabi H, Ritchie RO, Tsuji N, Zhang X, Wu X. Heterostructured materials: superior properties from hetero-zone interaction. Mater Res Lett. 2021;9:1–31. https://doi.org/10.1080/21663831.2020.1796836.
  • 4. Ning J, Zhang L, Xie M, Yang H-X, Yin X, Zhang J. Microstruc- ture and property inhomogeneity investigations of bonded Zr/Ti/ steel trimetallic sheet fabricated by explosive welding. J Alloys Compd. 2017;698:835–51. https://doi.org/10.1016/j.jallcom.2016. 12.213.
  • 5. Li MH, Ma M, Liu WC, Yang FQ. Recrystallization behavior of cold-rolled Zr 702. J Nucl Mater. 2013;433:6–9. https://doi.org/ 10.1016/j.jnucmat.2012.09.022.
  • 6. Igolkin AI. Use of zirconium for mechanization of chemical processes. Chem Pet Eng. 1999;35:111–7. https://doi.org/10.1007/ BF02363032.
  • 7. Northwood DO. The development and applications of zirconium alloys. Mater Des. 1985;6:58–70. https://doi.org/10.1016/0261- 3069(85)90165-7.
  • 8. Schutz RW, Watkins HB. Recent developments in titanium alloy application in the energy industry. Mater Sci Eng A. 1998;243:305–15. https:// doi. org/ 10. 1016/ s0921- 5093(97) 00819-8.
  • 9. Boyer RR. An overview on the use of titanium in the aerospace industry. Mater Sci Eng, A. 1996;213:103–14. https://doi.org/10. 1016/0921-5093(96)10233-1.
  • 10. Grauman JS, Say T. TITANIUM for hydrometallurgical extraction equipment. Adv Mater Processes. 2000;157:25.
  • 11. Oberndorfer M, Thayer K, Kästenbauer M. Application lim- its of stainless steels in the petroleum industry. Mater Corros. 2004;55:174–80. https://doi.org/10.1002/maco.200303781.
  • 12. Banker JG. Explosion cladding: an enabling technology for zir- conium in the chemical process industry, ASTM, 2010.
  • 13. Towler G, Sinnott R. Design of pressure vessels, in: Chemical Engineering Design, Butterworth-Heinemann, 2022: pp. 441–495. https://doi.org/10.1016/b978-0-12-821179-3.00014-5.
  • 14. Pelliccione AS, SantAnna R, Siqueira MHS, Ribeiro AF, Ramos JE, Silva OP, Pimentel MF. Failure analysis of a tita- nium plate heat exchanger – Mechanical fatigue. Eng Fail Anal. 2019;105:1172–88. https://doi.org/10.1016/j.engfailanal.2019.07. 059.
  • 15. Martins GSM, da Silva RPPD, Beckedorff L, Monteiro AS, de Paiva KV, Oliveira JLG. Fatigue performance evaluation of plate and shell heat exchangers. Int J Pressure Vessels Piping. 2020;188:104237. https://doi.org/10.1016/j.ijpvp.2020.104237.
  • 16. Ali M, Ul-Hamid A, Alhems LM, Saeed A. Review of common failures in heat exchangers – Part I: Mechanical and elevated temperature failures. Eng Fail Anal. 2020;109:104396. https://doi.org/ 10.1016/j.engfailanal.2020.104396.
  • 17. Findik F. Recent developments in explosive welding. Mater Des. 2011;32:1081–93. https://doi.org/10.1016/j.matdes.2010.10.017.
  • 18. Fang Y, Jiang X, Mo D, Zhu D, Luo Z. A review on dissimilar metals’ welding methods and mechanisms with interlayer. Int J Adv Manuf Technol. 2019;102:2845–63. https://doi.org/10.1007/ s00170-019-03353-6.
  • 19. Mendes R, Ribeiro JB, Loureiro A. Effect of explosive characteristics on the explosive welding of stainless steel to carbon steel in cylindrical configuration. Mater Des. 2013;51:182–92. https:// doi.org/10.1016/j.matdes.2013.03.069.
  • 20. Xie MX, Zhang LJ, Zhang GF, Zhang JX, Bi ZY, Li PC. Microstructure and mechanical properties of CP-Ti/X65 bimetallic sheets fabricated by explosive welding and hot rolling. Mater Des. 2015;87:181–97. https://doi.org/10.1016/j.matdes.2015.08.021.
  • 21. Zhang LJ, Pei Q, Zhang JX, Bi ZY, Li PC. Study on the micro- structure and mechanical properties of explosive welded 2205/ X65 bimetallic sheet. Mater Des. 2014;64:462–76. https://doi.org/ 10.1016/j.matdes.2014.08.013.
  • 22. Wang F, Yang M. Experimental and numerical investigations of platinum foil/titanium plate interfaces prepared by explosive welding. Arch Civil Mech Eng. 2023. https://doi.org/10.1007/ s43452-022-00591-6.
  • 23. Solecka M, Mróz S, Petrzak P, Mania I, Szota P, Stefanik A, Garstka T, Paul H. Microstructure-related properties of explosively welded multi-layer Ti/Al composites after rolling and annealing. Arch Civil Mech Eng. 2023. https://doi.org/10.1007/ s43452-022-00577-4.
  • 24. Yang M, Ma HH, Shen ZW. Study on explosive welding of Ta2 titanium to Q235 steel using colloid water as a covering for explosives. J Market Res. 2019;8:5572–80. https://doi.org/10.1016/j. jmrt.2019.09.025.
  • 25. Zhou Q, Liu R, Ran C, Fan K, Xie J, Chen P. Effect of microstructure on mechanical properties of titanium-steel explosive welding interface. Mater Sci Eng. 2022;830:142260. https://doi.org/ 10.1016/J.MSEA.2021.142260.
  • 26. Chen X, Inao D, Li X, Tanaka S, Li K, Hokamoto K. Opti- mal parameters for the explosive welding of TP 270C pure titanium and SUS 821L1 duplex stainless steel. J Market Res. 2022;19:4771–86. https://doi.org/10.1016/J.JMRT.2022.07.031.
  • 27. Karolczuk A, Paul H, Szulc Z, Kluger K, Najwer M, Kwiatkowski G. Residual stresses in explosively welded plates made of titanium grade 12 and steel with interlayer. J Mater Eng Perform. 2018. https://doi.org/10.1007/s11665-018-3559-4.
  • 28. Karolczuk A, Carpinteri A, Robak G, Derda S, Prażmowski M. Fatigue failure analysis of three - layer Zr – Ti / Zr – Steel com- posite plates : an insight into the evolution of cracks initiated at the interfaces. Arch Civil Mech Eng. 2020;20:1–13. https://doi. org/10.1007/s43452-020-00145-8.
  • 29. Xu J, Yang M, Chen D, Ma H, Shen Z, Zhang B, Tian J. Provid- ing a new perspective for obtaining high-quality metal coatings: fabrication and properties studies of TA2 foil on Q235 steel by explosive welding. Arch Civil Mech Eng. 2021. https://doi.org/ 10.1007/s43452-021-00271-x.
  • 30. Jiang F, Deng ZL, Zhao K, Sun J. Fatigue crack propagation normal to a plasticity mismatched bimaterial interface. Mater Sci Eng, A. 2003;356:258–66. https://doi.org/ 10. 1016/S0921- 5093(03)00142-4.
  • 31. Zhou B, Zhou C, Chang L, Yu X, Ye C, Zhang B. Investigation on fatigue crack growth behavior of Zr702/TA2/Q345R explosive welding composite plate with a through-wall crack. Compos Str. 2020. https://doi.org/10.1016/j.compstruct.2019.111845.
  • 32. Ostroushko D, Mazancova E. Chosen properties of sandwich CrNi steel-ti material after explosive cladding, in: 19th International Conference on Metallurgy and Materials, 2010.
  • 33. Wachowski M, Śnieżek L, Szachogłuchowicz I, Kosturek R, Płociński T. Microstructure and fatigue life of Cp-Ti/316L bimetallic joints obtained by means of explosive welding. Bull Polish Acad Sci Techn Sci 2018; 66:925–933. https://doi.org/10.24425/ bpas.2018.125940.
  • 34. Wachowski M, Gloc M, Ślęzak T, Płociński T, Kurzydłowski KJ. The Effect of heat treatment on the microstructure and properties of explosively welded titanium-steel plates. J Mater Eng Perform. 2017. https://doi.org/10.1007/s11665-017-2520-2.
  • 35. Kurek A, Wachowski M, Niesłony A, Płociñski T, Kurzydłowski KJ. Fatigue tests and metallographic of explosively cladded steel- titanium bimetal. Arch Metall Mater. 2014;59:1566–70. https:// doi.org/10.2478/amm-2014-0265.
  • 36. Karolczuk A, Kowalski M, Bański R, Żok F. Fatigue phenomena in explosively welded steel–titanium clad components subjected to push–pull loading. Int J Fatigue. 2013;48:101–8. https://doi. org/10.1016/j.ijfatigue.2012.10.007.
  • 37. Derda S, Karolczuk A, Robak G, Prażmowski M. Analysis of the fatigue life of metal composites with a layer of zirconium alloy. MATEC Web Confer. 2021;338:01004. https://doi.org/10.1051/ matecconf/202133801004.
  • 38. Derda S, Karolczuk A, Prażmowski M, Kurek A, Wachowski M, Paul H. Fatigue life and cyclic creep of tantalum / copper/steel layerwise plates under tension loading at room temperature. Int J Fatigue. 2022;162:106977. https://doi.org/10.1016/j.ijfatigue. 2022.106977.
  • 39. Szmul M, Stan-Glowinska K, Janusz-Skuza M, Bigos A, Chudzio A, Szulc Z, Wojewoda-Budka J. The interface zone of explosively welded titanium/steel after short-term heat treatment. Metall Mater Trans A Phys Metall Mater Sci. 2021;52:1588–95. https:// doi.org/10.1007/s11661-021-06174-z.
  • 40. Rasmussen CE, Williams CKI. Gaussian process for machine learning, The MIT Press, 2006. www.GaussianProcess.org/gpml.
  • 41. Swiler LP, Gulian M, Frankel AL, Safta C, Jakeman JD. A Survey of constrained gaussian process regression: approaches and implementation challenges. J Mach Learn Model Comput. 2020;1:119– 56. https://doi.org/10.1615/jmachlearnmodelcomput.2020035155.
  • 42. Chopra OK, Shack WJ. Review of the margins for ASME code fatigue design curve – effects of surface roughness and material variability. Washington. 2003. https://doi.org/10.2172/925073.
  • 43. Karolczuk A, Kluger K, Derda S, Prażmowski M, Paul H. Influ- ence of impact velocity on the residual stress, tensile strength, and structural properties of an explosively welded composite plate. Materials. 2020. https://doi.org/10.3390/ma13122686.
  • 44. Paul H, Morgiel J, Baudin T, Brisset F, Prażmowski M, Miszczyk M. Characterization of explosive weld joints by TEM and SEM/ EBSD. Arch Metall Mater. 2014;59:1129–36. https://doi.org/10. 2478/amm-2014-0197.
  • 45. Gloc M, Wachowski M, Plocinski T, Kurzydlowski KJ. Microstructural and microanalysis investigations of bond titanium grade1/low alloy steel st52-3N obtained by explosive welding. J Alloys Compd. 2016;671:446–51. https://doi.org/10.1016/j.jallc om.2016.02.120.
  • 46. Prasanthi TN, Sudha C, Saroja S. Explosive cladding and post- weld heat treatment of mild steel and titanium. Mater Des. 2016;93:180–93. https://doi.org/10.1016/j.matdes.2015.12.120.
  • 47. Dodd B, Bai Y. 1 - Introduction, In: Dodd B, Bai Y (Eds.), Adi- abatic shear localization (Second Edition), Second Edi, Elsevier, Oxford, 2012: pp. 1–20. https:// doi. org/ 10. 1016/ B978-0- 08- 097781-2.00001-0.
  • 48. Karolczuk A, Derda S, Robak G, Prazmowski M. Fatigue test data of corrosion-resistant explosively welded heterostructured plates. Mendeley Data, V1. 2022. https://doi.org/10.17632/mc8bc 9tm59.1.
  • 49. Gao J, Wang J, Xu Z, Wang C, Yan S. Multiaxial fatigue predic- tion and uncertainty quantification based on back propagation neural network and Gaussian process regression. Int J Fatigue. 2023;168:107361. https:// doi. org/ 10. 1016/j. ijfat igue. 2022. 107361.
  • 50. Karolczuk A, Słoński M. Application of the Gaussian process for fatigue life prediction under multiaxial loading. Mech Syst Signal Process. 2022;167:108599. https://doi.org/10.1016/j.ymssp.2021. 108599.
  • 51. Greenwell BM, Boehmke BC, McCarthy AJ. A simple and effec- tive model-based variable importance measure 2018;1–27. arXiv: 1805.04755v1.
  • 52. Goldstein A, Kapelner A, Bleich J, Pitkin E. Peeking inside the black box: visualizing statistical learning with plots of individual conditional expectation. J Comput Graph Stat. 2015;24:44–65. https://doi.org/10.1080/10618600.2014.907095.
  • 53. Pan B, Xie H, Wang Z. Equivalence of digital image correlation criteria for pattern matching. Appl Opt. 2010;49:5501–9. https:// doi.org/10.1364/AO.49.005501.
  • 54. Song J, Kostka A, Veehmayer M, Raabe D. Hierarchical micro- structure of explosive joints: example of titanium to steel cladding. Mater Sci Eng A. 2011;528:2641–7. https:// doi. org/ 10. 1016/j.msea.2010.11.092.
  • 55. Leitner T, Hohenwarter A, Ochensberger W, Pippan R. Fatigue crack growth anisotropy in ultrafine-grained iron. Acta Mater. 2017;126:154–65. https://doi.org/10.1016/j.actamat.2016.12.059.
  • 56. Li C, Wu S, Zhang J, Xie L, Zhang Y. Determination of the fatigue P-S-N curves – A critical review and improved backward statistical inference method. Int J Fatigue. 2020;139:105789. https://doi. org/10.1016/j.ijfatigue.2020.105789.
  • 57. Pang JC, Li SX, Wang ZG, Zhang ZF. Relations between fatigue strength and other mechanical properties of metallic materials. Fatigue Fract Eng Mater Struct. 2014;37:958–76. https://doi.org/ 10.1111/ffe.12158.
  • 58. Murakami Y, Endo M. Effects of defects, inclusions and inho- mogeneities on fatigue strength. Int J Fatigue. 1994;16:163–82. https://doi.org/10.1016/0142-1123(94)90001-9.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-de4863bd-666e-46ea-aaf5-2f4298edf80a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.